Lorenzen’s theory of divisibility in monoid-preordered sets

1 “Teilbarkeitstheorie in Bereichen” (1952), § 1.

Definition 1.1 ([Lor52, Definition 1, p. 270]). A G-ordered set B is a set with a preorder <p and a
monoid G of order-preserving operators on B:
a<pb b<pc a<pb

CL#BCL, ) .
a=<xpc ra <p xb

If a <p b and b <p a hold, then we say that a and b are equal w.r.t. <p and write a =g b.

Remark 1.2. We shall use latin letters a, b, ¢ for elements of a G-ordered set and latin letters z, y, z for
elements of a monoid.

Definition 1.3 ([Lor52, Definition 2, p. 270]). A G-semilattice H is a G-ordered set with a preorder <p
and a meet Ay that make it a semilattice, and with a monoid G of meet-preserving operators on H:

v<ga v=<uph

, x(uAg ) =g xa Ay xb.
/VﬁHU,/\H/G

Remark 1.4. We shall use Kurrent letters «, 4, # for elements of a G-semilattice.

There may be finer meet-preserving preorders on a G-semilattice H for which the operators in G are
still meet-preserving. To make this precise, let us state the following definition and proposition.

Definition 1.5 ([Lor52, Definition 3, p. 270]). Let (H, <m, Ax) be a G-semilattice. A preorder < on H
is admissible for g if it is finer than <y and if (H, <, Ag) is a G-semilattice.

Proposition 1.6. A preorder < on a G-semilattice (H, <y, \y) is admissible for <y if and only if

a<pgh a<Ad vra b
a=<b za<al  wv<Lalgh

(1)

Proof. [Argument in Lor50, p. 499.] As a Ay 4 <y 4 and «a Ay & <y b, the first condition implies that
ahg b <aand aAg b <40, sothat with the third condition a Ay £ is equal w.r.t. < to the meet of

aand & w.r.t. <:
vr=a r4h

v<O0Ngh .

As any x satisfies (4 Ay &) =g xa Ay xd, the first condition shows that x(«a Ay £) and za Ay xb are
also equal w.r.t. <. O

Proposition 1.7. A conjunction of admissible preorders is admissible.



2 “Teilbarkeitstheorie in Bereichen” (1952), § 2.

Definition 2.1 ([Lor52, Definition 4, p. 270]). An ideal G-semilattice for a G-ordered set (B, =<p) is a
minimal G-supersemilattice for B: this is the set B of formal meets (that is, finite lists) 4 = a; A+ - Aay,
of elements of B endowed with a preorder <y that extends <p and makes it a semilattice, and with a
monoid of operators that extend those on B:

S

a B

for all a,b € B,

ON-

a <XH
We say that g is an ideal G-semilattice preorder for (B, <p).
Remark 2.2. 1t is a question of taste whether to define formal meets as lists or as multisets (lists up to

permutation) or as sets (multisets with contraction).

Remark 2.3. Lorenzen [Lor50, pp. 503-505] proves the equivalence of this definition with the one pro-
posed by Priifer [Pri32]. In fact, if one considers the finite meets « as sets, an ideal G-semilattice
preorder <y is given by an application 4 — «,. into the subsets of B endowed with the relation of
containment, where the application satisfies

1. a C a,;

2. if u C 4,, then «, C b,;

3. iffae B, then {a}, ={b|la<pb};
4. za, = (za),.

Jaffard [Jaf60, p. 120] states condition 2 with the weaker hypothesis « C £, but this is probably a typo.
Then a, ={a € B:au<ya}.

Remark 2.4. Ideal G-semilattices correspond exactly to single-statement entailment relations defined
from (B, <) with an additional structure given by G: see [Lor51, Satz 3].

The following constructions will be important.

Definition 2.5. Let xg be any preorder that makes (B, x5) a G-ordered set. The preorder <g, on B
is defined by

ar N Nap S5 a if ag<gaor...ora,=<ga.
S

The preorder g on B is defined by

) cxXsgrxra; ... c<Xgzxa
AN ANagy <= a if VeeG-— ! - .
Sv c<Xg xa

Proposition 2.6. Let (B, <) be a G-ordered set. The G-ordered sets (B, <g,) and (B, <g,) endowed

with the operation
xlag A+ Nay) =xa3 A A xay, (2)

are respectively the minimal and the maximal ideal G-semilattice for (B, <gs): every preorder < that
makes B an ideal G-semilattice for (B, <) satisfies

a<s b a<xhb

S
2  and .
a=<h o <g A
Proof. [Argument in Lor50, Satz 14 and Satz 15, pp. 507-508.] The two preorders make B a semilattice.
The preorder <3 clearly induces <g on B and is clearly preserved by the operation (2). If X isa
preorder that makes B an ideal G-semilattice for B and a A ANap Sg a, then a, <s a for some p
and therefore a1 A -+ A a,, < a.



Let us show that <3, induces <g on B: if a1 <g a, then xa; <g xa and therefore ¢ g xa; entails
¢ <g xa. Conversely, this yields for x the unit and ¢ the element a, that a; g a; entails a; <g a, so
that a1 <g «a.

Let us show that the operation (2) is <\g,-preserving. Suppose that a3 A -+ A a,, g, @ and let us
show that yai A -+ Aya, <g ya: but if ¢ K¢ (zy)as,,...,c s (xY)am, then ¢ X5 (zy)a.

If < is a preorder that makes B an ideal G-semilattice for B, then

cXsgrar ... C<X§ Ty, ag N Namy K a
cxxxag N Nxay, xar N\ - Nxa, < xa
C s Ta )
so that <g is finer than <. O

Remark 2.7. The ideal semilattice (B, <p.) has been introduced in [Lor39, p. 537], while the ideal

~

semilattice (B, <5 ) dates back to van der Waerden and Priifer [see Kru35, § 43].

Proposition 2.8. A preorder < on B is admissible for <35, if and only if (B, <) is a G-semilattice and
the preorder induced by < on B is finer than <p.

There may be finer preorders on B that give rise to the same ideal G-semilattice. To make this
precise, let us state the following definition and proposition.

Definition 2.9 ([Lor52, Definition 5, p. 271]). Let <y be an ideal G-semilattice preorder for (B, Xp).
A preorder g on B is <g-admissible if g is induced by a preorder < that is admissible for <y:

rules (1) hold and
a<b

a<gb

Proposition 2.10. A preorder <g on B is < p,-admissible if and only if it is finer than B.

Proposition 2.11. Let <y be an ideal G-semilattice preorder for (B,<p). A preorder <g on B is
< g-admissible if and only if the preorder <3, given in definition 2.5 is admissible for <p.

Proof. [Argument in Lor50, Satz 17, p. 511.] By proposition 2.6, (E , <§v) is the finest ideal G-semilattice
for (B, <s): in particular, <3 induces <5 on B.

If <g, Isa preorder that is admissible for g, then <g is <y-admissible by definition.

Conversely, if < is a preorder that is admissible for <5 and induces g on B, then < is finer than <y,
and <3, is finer than < because < makes B an ideal G-semilattice for (B, <s): therefore <g, is finer
than <y and thus admissible for <. O

Definition 2.12. Let <y be an ideal G-semilattice preorder for (B, <p) and consider an < y-admissible
preorder <g. The minimal ideal G-semilattice extension <’y is the conjunction of all ideal G-semilattice
preorders for (B, <) that are admissible for <.

Remark 2.13. Strangely, Lorenzen did not impose in his definition that the extensions must be admissible!
Is this an error or an omission?

Proposition 2.14. Consider the ideal G-semilattice preorder < B,

preorder <g. The minimal ideal semilattice extension of <g is <5

for (B,<p) and a 4§S—adm1'ss1'ble

Lemma 2.15. Let <y be an ideal G-semilattice preorder for (B,<p) and consider < p-admissible
preorders <g and <p such that <r is finer than <g. Then </, is finer than <.

Proof. Let < be an preorder that is admissible for <y and induces <g on B. For every preorder <7
that is admissible for <z and induces <7 on B, the conjunction of < and <5 is also an extension of <g
that is admissible for <. O



Lemma 2.16. Let <y be an ideal G-semilattice preorder for (B, <p). If <g is an <y-admissible total
preorder on B, then its unique extension to B is the admissible total preorder <g on B given by

ay A A Ay, <§CL iff min(al, e ,am) <S a. <3)

Proof. [Argument in Lor50, Satz 18, p. 512.] It suffices to prove that the preorders <g and <z in
definition 2.5 coincide with the definition of <gin (3). This follows at once for <g.- For <3, note that
¢ <s xay, ..., c <g ra, hold simultaneously if and only if ¢ <g xmin(ay,...,an). O

Definition 2.17 ([Lor52, Definition 6, p. 271]). A G-ordered set B is < g-principal, where <y is an ideal
G-semilattice preorder for (B, <p), if its preorder <p is a conjunction of < g-admissible total preorders.

Definition 2.18. Let <y be an ideal G-semilattice preorder for (B, <p). We define the preorder <y,
on B by
ay A -+ A apy g, o iff for all g g-admissible total preorders < on B
holds min(ay,...,a,) < a,

and the preorder <y, for an <py-admissible preorder <g by

ai N\ -+ N\ ay <sm, o iff for all <py-admissible total preorders < on B
that refine ¢ holds min(ay,...,a,) < a.

Proposition 2.19. Let <y be an ideal G-semilattice preorder for (B, <pg). The preorder <y, on B is
admissible for <p.

Proof. The preorder <y, is a conjunction of admissible preorders by lemma 2.16. O
Corollary 2.20. Let <y be an ideal G-semilattice preorder for (B,<pg). T.L.a.e.

1. B is <pg-principal.

2. (B, <p,) is an ideal G-semilattice for B.

3. The preorder <y, induces <p on B.

4. The preorder < p is finer than the preorder induced by <y, on B.

Proposition 2.21 ([Lor50, Satz 19, p. 512]). Let <y and < be ideal G-semilattice preorders for (B, <p).
Then <Xk is a conjunction of total preorders that are admissible for <y if and only if < is a conjunction
of total preorders that are admissible for < and every total preorder that is admissible for <y induces
an <y-admissible total preorder on G.

Proof. The condition is clearly sufficient. Conversely, let < be a preorder that is admissible for <x and
let <g be the preorder induced by < on B. Then

ag A Nay <k b ai N Napm <g b
ar AN Nam b and ag A+ Aay <u, b.
al/\~~/\am<§Ub ay N Nay Sk b

Therefore <, is a preorder that is admissible for <y and <g is <py-admissible by proposition 2.11. [
The proof shows the following.

Proposition 2.22. Let <y and <k be ideal G-semilattice preorders for (B, <p). If <k is a conjunction
of total preorders that are admissible for < g, then every preorder that is admissible for < induces an
<g-admissible preorder on G.



Definition 2.23 ([Lor52, Definition 7, p. 271]). Let g be an ideal G-semilattice preorder for (B, <p).
An element a of B is <y, -dependent from the elements a4, ..., a,, € B if

a1 NN ay <H, @

An element a of B is <g pu,-dependent from the elements ay,...,a, € B for an <py-admissible
preorder <g on B if
ar N Napy 8,H, O

Definition 2.24. Given a pair a = (a1, as) out of B, we define the xp-extension <[]y as the con-
junction of all <g-admissible preorders < on B that refine <g and such that a; < as:

<sb
453 and a1 < as.
a<b
We let o™ = (a1, az) and ™! = (ag, ay).
Lemma 2.25 ([Lor52, Lemma, p. 272]). An element a is < u,-dependent from the elements ay, . . ., Gy,
of B if and only if
there are pairs ay, . ..,a, out of B such that for all choices of A
signs €1,...,6. € {+1,—1} holds ay A -+ A ap, </S[ai1 ey O (4)

Proof. 1f condition (4) holds, consider an = y-admissible total preorder < on B that refines <g. For

every pair a = (a1, a2) out of B, either a; < ay (set € = +1) or az < ay (set € = —1): therefore < also
refines <sfac),- By reiterating this, one proves that < also refines <gjoe1 4z, for some choice of signs
€1,...,€ € {+1,—1}: therefore < refines g<'5,[a51 0]y and min(ay, ..., a,) < a.

1 e

Conversely, suppose that condition (4) does not hold and consider a maximal <py-admissible pre-
order <r refining <¢ for which condition (4) fails. Let us prove by contradiction that <7 is a total
preorder: let a = (ay, az) be a pair out of B; if neither a; < ag nor as < ay did hold, then <7[at)y and
<Tja-1], Would be strictly finer <py-admissible preorders and thus satisfy condition (4). But this would
correspond to condition (4) for < itself. Therefore <7 is a total preorder < refining <g for which
min(ay, ..., a,) < a does not hold. O

Remark 2.26. One should be able here to check directly that

. /
a,...,onEa if o sar Ao Aap %S[aﬂ iy Q
1

----- Qe }H
defines a single-conclusion entailment relation in the sense of [Lor51, 1.—4. in Satz 1, p. 84].

Theorem 2.27 ([Lor52, Satz 1, p. 272]). The G-ordered set B is <py-principal, where <y is an ideal
G-semilattice preorder for (B, <p), if and only if

ap %B[ail,...,aie]H a for all €1y,...,E € {+1, —].}

(5)

a1 I a
Proof. By corollary 2.20, B is <g-principal if and only

a is <p,-dependent from a;

(6)

a1 X a
By lemma 2.25, if a is <y, -dependent from a;, then there are pairs ay, ..., a, out of B such that
a1 Bty @ for all choices of signs €1,...,6.. This shows that rule (6) may be derived from
rule (5), and therefore sufficiency.
Conversely, lemma 2.25 tells also that
a1 Spjact . aze), @ foraller,... e € {+1,-1}

a is <p,-dependent from a;

If B is <g-principal, rule (6) holds and we derive rule (5). O

)



3 “Teilbarkeitstheorie in Bereichen” (1952), § 3.

Definition 3.1 ([Lor52, Definition 8, p. 272]). A G-lattice V is a G-semilattice with a preorder <y, a
meet Ay and a join Vy that make it a lattice, and with a monoid G of join-meet-preserving operators
on V:

csya ¢cxyb asxyec b=xyc

c<xy aAy b ’ aVy b <y ¢
z(a Ay b) =za Ay xb, z(aVyb) =zaVy xb.
Remark 3.2. We shall use Fraktur letters a, b, ¢ for elements of a G-lattice.

Definition 3.3. Let (V, <y, Ay, Vy) be a G-lattice. A preorder < on V is admissible for <y if it is
finer than <y and if (V, <, Ay, Vy) is a G-lattice.

Proposition 3.4. A preorder < on a G-lattice (V,<v, Ay, Vy) is admissible for <y if and only if

a<y b a<<b c<a ¢c<b a<c b=<xc
a<b’ za<ab cc<xaAyb’  avyb=xc

(7)

Definition 3.5. An ideal G-lattice for a G-semilattice (H, <y, Ag) is a minimal distributive G-superlattice
for H: this is the set H of formal joins a =« V - - - V 4, of elements of H endowed with a preorder <y
that extends <y and makes it a distributive lattice, and with a monoid of operators that extend those

on H:

for all u, 4 € H, .
/O(,ﬁv/&

We say that <y is an ideal G-lattice preorder for H.

Definition 3.6. An ideal G-lattice for a G-ordered set B is a minimal distributive G-superlattice for B:
this is the ideal G-lattice B of formal joins of formal meets of elements of B endowed with a preorder <y
that extends <y and makes it a distributive lattice, and with a monoid of operators that extend those
on B. We say that <y is an ideal G-lattice preorder for B.

Remark 3.7. Ideal G-lattices correspond exactly to entailment relations defined from (B, =<p) with an
additional structure given by G: see [Lorb1, Satz 7].

Proposition 3.8. An ideal G-lattice for a G-ordered set B is the ideal G-lattice for an ideal G-
semilattice for B.

Proof. 1t suffices to consider the restriction <y of the preorder <y to B. O
The following constructions will be important.
Definition 3.9. Let (H, <5, Ax) be a G-semilattice. The preorder <z on H is defined by

d%gsﬂl\/"'\/um iff A gy O ... Or A Xg - (8)

The preorder <5 on H is defined by

:L’U,l/\ﬁ%gﬂ I/(L,n/\/ﬁﬁg/V
A=g VoV, iff ) 9)
v :cu/\/€;<§/z7

Proposition 3.10. Let (H,<g,Au) be a G-semilattice. The G-ordered sets (H, <g,) and (H, <3,)
endowed with the operation
(g Ve Villy) =x0g VeV ady, (10)

are ideal G-lattices for H: they will be called respectively ]jls and ITL, and are the coarsest and the finest
ideal G-lattice for H: every preorder < on H that extends (H,<g) and makes H an ideal G-lattice
for B satisties
3 b a<Ab
— = and —.
a =LA a =<z A

as



There may be finer preorders on B that give rise to the same ideal G-lattice. To make this precise,
let us state the following definition.

Definition 3.11. Let <y be an ideal G-lattice preorder for B. A preorder <g on B is <y -admissible
if g is induced by a preorder < that is admissible for <y: rules (7) hold and

a<b

a g b
Remark 3.12. One should state and prove here a counterpart to proposition 2.11.

Definition 3.13. Let <y be an ideal G-lattice preorder for B and consider a <v-admissible preorder xs.
The minimal ideal lattice extension X's is the conjunction of all extensions of <¢ to B that are admissible
for <y.

Lemma 3.14. Let <y be an ideal G-lattice preorder for B and consider <y-admissible preorders
=g and <r such that <r is finer than <g. Then </ is finer than X.

Lemma 3.15. Let <y be an ideal ~G-]att1’ce preorder for B. If <g is a #V—gdmissible total preorder
on B, then its unique extension to B is the admissible total preorder <g on B given by

ar N Ny <gbi Ve Vb iff min(ay, ..., ay,) <g max(by,...,b,). (11)

Proof. [Argument in Lor50, Satz 20, p. 513.] By lemma 2.16, the unique extension of <g to B is the
total preorder <z defined in (3). Let us check that the preorders < g, and <z defined in definition 3.9
coincide with the definition of < zin (11). This follows at once for < 3, For < g, note that zay A b <57,
<+ +y Ty A <5 # hold simultaneously if and only if 2 max(ay, ..., am) A8 <g . O]

Definition 3.16. A G-ordered set B is <y-principal, where <y is an ideal G-lattice preorder, if its
preorder <pg is a conjunction of <y -admissible total preorders.

Definition 3.17. Let <y be an ideal G-lattice preorder for B. We define the preorder <y, on B by

ay N Nap Sy, by V- Vb, iff for all <y-admissible total preorders <
on B holds min(ay, ..., a,) <max(by,...,b,). (12)

and the preorder <gy, for a <y-admissible preorder <g by

ap A\ - A apy sy, b1 V--- Vb, iff for all 5y -admissible total preorders <
on B refining <g holds min(ay, ..., a,) < max(by,...,b,). (13)

Proposition 3.18. Let <y be an ideal G-lattice preorder for B. The preorder <y, on B is admissible
for <y .

Proof. The preorder <y, is a conjunction of admissible preorders by lemma 3.15. O
Corollary 3.19. Let <y be an ideal G-lattice preorder for B. T.f.a.e.

1. B is <y -principal.

2. (B,<y,) is an ideal G-lattice for B.

3. The preorder <y, induces <xp on B.

4. The preorder <p is finer than the preorder induced by <y, on B.

Remark 3.20. Compare with [Lor50, Satz 21, p. 514] which at first view seems to state the opposite.



Definition 3.21. Given a pair a = (a1, ag) out of B, we define the <y -extension <sjq), as the conjunc-
tion of all <y -admissible preorders < on B that refine g and such that a; < ao:

aﬁsb
a<b

and a1 < as.

Lemma 3.22 ([Lor52, Satz 2, p. 273]). The inequality a; A---Aap <s,v, b1V ---Vb, holds for elements

a1, ...y Qm,b1,...,b, of B and a <y-admissible preorder <g on B if and only if there are pairs o, . . ., c,

out of B such that for all choices of signs e1,...,e. € {+1,—1} we have ay A\ -+ N\ ap, #’S[ael ace]y
1 eenCe

by V- \b,.

Proof. The same proof as for lemma 2.25. n

Remark 3.23. Strangely, Lorenzen states this lemma only under the hypothesis that B is <y -principal.

Theorem 3.24. A G-ordered set B is <y -principal, where <y is an ideal G-lattice preorder for B, if

and only if
@ Xpact,. aze), b foraller,... ec € {+1,-1}

CL%Bb

Proof. The same proof as for theorem 2.27. O

4 “Teilbarkeitstheorie in Bereichen” (1952), § 4.

Definition 4.1 ([Lor52, Definition 9, p. 273]). A G-lattice (V, <y, Av, Vy ) is regular if it is distributive
and if for all a,b in V and z,y in G holds

xa Ay yb <y xb Vy ya. (14)
Proposition 4.2. If <y is a total preorder <, then V' is regular.

Proof. Let a,b in V. If a < b, then za < xb; if b < a, then yb < ya. In both cases, min(za, yb) <
max(zb, ya). O

Proposition 4.3. If (V,<v, Av, V) is regular and < is admissible for 5y, then (V, <, Ay, Vy) is also
regular.

Proof. This follows from the fact that the meets and joins for <y are equal w.r.t. < to the meets and
joins for <, and that < is finer than <y . O

Corollary 4.4. If the preorder <y of a G-lattice V' is a conjunction of admissible total preorders
of (V,<v), then V is regular.

Theorem 4.5 ([Lorb2, Satz 3, p. 274]). The preorder <y of a G-lattice V' is a conjunction of admissible
total preorders of (V,<y) if and only if V is regular.

Proof. Only sufficiency remains to be proved. For every pair v = (¢, ¢2) such that ¢; £y o, we need to
find an admissible total preorder < such that ¢; ;{ ¢o. Consider a maximal admissible preorder <g on
(V,<v) with ¢; A5 ¢ and let us consider the orders <, defined for every pair 3 = (b1, b2) by

a<s; b if zaAyb s xbV yby for all z and y. (15)
Then <, is admissible. In fact,

¢ <g, refines <5: if a <5 b, then wa <5 xb and wa A yb1 <5 xbV ybo;

¢ <s, is transitive: if vaAyb; <5 2bVybs, then xaAyb <5 (vbVybs) Aybi =5 (xbAyb1)V (yb1 Aybs);
if furthermore xb A yby <g xc V yby, then za A yby s (zcV ybe) V (yby A ybe) =5 xc V ybs;

8



« every z preserves g, if a <g, b, then (z2)aAyby X5 (v2)bVyb, for all v and y, that is, za <, 2b;

* <g, preserves meets: if zc A yby <s wa V yby and xzc A yby <s xb V yby, then xc A yb; <Xs
(xa V yby) A (xbV ybe) =g (xa A xb) V (xa A ybs) V (yba A xb) V ybe =g x(a A b) V yba;

o dually, g, also preserves joins.

Furthermore, <. is g by maximality, for if we had ¢; <g, ¢z, then ¢; <5 ¢; would hold by letting
x and y be the identical operator in the definition of S,.

Let us prove that <5 is a total preorder and suppose that by #s bi: note that by <5, b1 by regularity,
so that <g, is strictly finer than <g; by maximality holds ¢; <5, co. But then, by the symmetry of
definition (15), by <g, bo. O

Remark 4.6. This proof is still not too involved because the lattice structure of V' and the semigroup
structure of G' do not interfere too much.

5 “Die Erweiterung halbgeordneter Gruppen zu
Verbandsgruppen” (1953), § 1.

Lemma 3.22 shows that if one starts by letting <y, be the preorder on B given by

ag N Nag Sy, by V- Vb, iff 3o, 0. a1 Ao ANag, #lB[ail +1
1

7777 sy Qe ]

L vV, (16)

one defines a regular distributive G-lattice. This distributivity may be proved directly by showing
that (16) defines an entailment relation [argument in Lor53, pp. 16-17]. Regularity may also be proved
directly [argument in Lor53, pp. 17-18].

6 “Die Erweiterung halbgeordneter Gruppen zu
Verbandsgruppen” (1953), § 2.

In the case of a preordered group G, its ideal lattice (C:’, <y) is already determined by its ideal
semilattice (G, <p): as (by V---Vb,)(by' A--- Ab;1) = 1, one has

AN ANy Sy b1 Ve--Vb, iff aby" A ANapbt <p 1.
One can therefore resort to lemma 2.25 and try to start by letting <y, be the preorder given on G by

ar A N <, btV Vb, iff 3 ab P A At < e (17)

B[Vl oo Ve ]H

e

and prove that this defines a distributive lattice domain (C:‘, <u,) by analogy with section 5. This is
straightforward. Furthermore holds

Theorem 6.1 ([Lor53, Satz 1, p. 18]). (G, <p,) is a regular lattice group.
The proof of theorem 6.1 takes 5 pages: [Lorb3, pp. 18-22].
Proposition 6.2. Let (G, <,A, V) be a lattice group. T.f.a.e.
1. G is regular.

2. za ANby < xbV ay.

3 aANzar ' =1
a=1

aANb=x1
aNzbr ' <1



5 a " ANzar™' < 1.

It turns out [see Lorb3, p. 23| that in any lattice group hold the following properties (without
supposing regularity).

e ab ' Aba! X 1.
-1 -1 -1
o CciCy N Ncepoic, Nepep X1

o aiby, Ao ANayby, < aubi V- Voa,b, for any choice of vy, ..., v, between 1 and n and any
choice of uy,..., u, between 1 and m.

7 “Die Erweiterung halbgeordneter Gruppen zu
Verbandsgruppen” (1953), § 3.

In section 6, a regular lattice group (é, <pg,) has been defined for every ideal semilattice preorder <y
for a preordered group (G, =<¢). This lattice group is an ideal lattice domain for G if the preorder <,
is an extension of the preorder of GG: this is captured by

Definition 7.1. A group G is <g-closed if

a #G[Oélil,---,alil]H 1

aﬁgl

In the case of a field in which a relation of divisibility is defined by an integral domain I and whose
(commutative) multiplicative group G is therefore associated to the ideal semilattice (Hg, <4) of the
Dedekind ideals of I, the <4-admissible preorders of G are in bijection with the overrings for I. The
preorder <¢fpy, corresponds for the pair v = (a,b) to the integral domain I[a~'b).

An element a is <4-dependent from [ if and only if there are ¢y, . .., ¢, such that a € I[c{, ..., ¢!
for every choice of signs; the condition of <4-closedness (the so-called “integral closedness”) spells

ac ety .. ¢

ael

The definition of the regular lattice preorder <, spells

ap A N <d, b1 Vo Vb, iff 3o 1€ (anbyh, . amb DI . e

k 18
iff E|k 1e Z(albfl, . ,ambgl)”. ( )
»=1

Remark 7.2. The rdle of the hypothesis of <4-closedness here is not clear to me.

The last equivalence results from

Theorem 7.3 ([Lorb3, Satz 2, p. 24]).

k
oo L€ (a,... cap) [t . cFY iff F 1€ Z(al, ey )
»=1

This shows that in the case n = 1, the definition of <4, turns into the usual definition of integral
dependence:

ap N\ N ap —\<dabiffbk+clbk_1+---+ck:Oforsomek;and Ce € (a1, ... am)”.
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