
Lorenzen’s theory of divisibility in monoid-preordered sets

1 “Teilbarkeitstheorie in Bereichen” (1952), § 1.
Definition 1.1 ([Lor52, Definition 1, p. 270]). A G-ordered set B is a set with a preorder 4B and a
monoid G of order-preserving operators on B:

a 4B a,
a 4B b b 4B c

a 4B c
,

a 4B b

xa 4B xb
.

If a 4B b and b 4B a hold, then we say that a and b are equal w.r.t. 4B and write a ≡B b.

Remark 1.2. We shall use latin letters a, b, c for elements of a G-ordered set and latin letters x, y, z for
elements of a monoid.

Definition 1.3 ([Lor52, Definition 2, p. 270]). A G-semilattice H is a G-ordered set with a preorder 4H

and a meet ∧H that make it a semilattice, and with a monoid G of meet-preserving operators on H:

�c 4H �a �c 4H �b

�c 4H �a ∧H �b
, x(�a ∧H �b) ≡H x�a ∧H x�b.

Remark 1.4. We shall use Kurrent letters �a, �b, �c for elements of a G-semilattice.
There may be finer meet-preserving preorders on a G-semilattice H for which the operators in G are

still meet-preserving. To make this precise, let us state the following definition and proposition.

Definition 1.5 ([Lor52, Definition 3, p. 270]). Let (H,4H ,∧H) be a G-semilattice. A preorder 4 on H
is admissible for 4H if it is finer than 4H and if (H,4,∧H) is a G-semilattice.

Proposition 1.6. A preorder 4 on a G-semilattice (H,4H ,∧H) is admissible for 4H if and only if

�a 4H �b

�a 4 �b
,

�a 4 �b

x�a 4 x�b
,

�c 4 �a �c 4 �b

�c 4 �a ∧H �b
. (1)

Proof. [Argument in Lor50, p. 499.] As �a ∧H �b 4H �a and �a ∧H �b 4H �b, the first condition implies that
�a ∧H �b 4 �a and �a ∧H �b 4 �b, so that with the third condition �a ∧H �b is equal w.r.t. 4 to the meet of
�a and �b w.r.t. 4:

�c 4 �a �c 4 �b

�c 4 �a ∧H �b .

As any x satisfies x(�a ∧H �b) ≡H x�a ∧H x�b, the first condition shows that x(�a ∧H �b) and x�a ∧H x�b are
also equal w.r.t. 4.

Proposition 1.7. A conjunction of admissible preorders is admissible.
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2 “Teilbarkeitstheorie in Bereichen” (1952), § 2.
Definition 2.1 ([Lor52, Definition 4, p. 270]). An ideal G-semilattice for a G-ordered set (B,4B) is a
minimal G-supersemilattice for B: this is the set B̂ of formal meets (that is, finite lists) �a = a1∧· · ·∧am
of elements of B endowed with a preorder 4H that extends 4B and makes it a semilattice, and with a
monoid of operators that extend those on B:

for all a, b ∈ B,
a 4B b

a 4H b
.

We say that 4H is an ideal G-semilattice preorder for (B,4B).

Remark 2.2. It is a question of taste whether to define formal meets as lists or as multisets (lists up to
permutation) or as sets (multisets with contraction).
Remark 2.3. Lorenzen [Lor50, pp. 503–505] proves the equivalence of this definition with the one pro-
posed by Prüfer [Prü32]. In fact, if one considers the finite meets �a as sets, an ideal G-semilattice
preorder 4H is given by an application �a 7→ �ar into the subsets of B endowed with the relation of
containment, where the application satisfies

1. �a ⊆ �ar;

2. if �a ⊆ �br, then �ar ⊆ �br;

3. if a ∈ B, then { a }r = { b | a 4B b };

4. x�ar = (x�a)r.

Jaffard [Jaf60, p. 120] states condition 2 with the weaker hypothesis �a ⊆ �b, but this is probably a typo.
Then �ar = { a ∈ B : �a 4H a }.
Remark 2.4. Ideal G-semilattices correspond exactly to single-statement entailment relations defined
from (B,4B) with an additional structure given by G: see [Lor51, Satz 3].

The following constructions will be important.

Definition 2.5. Let 4S be any preorder that makes (B,4S) a G-ordered set. The preorder 4
Ŝs

on B̂
is defined by

a1 ∧ · · · ∧ am 4
Ŝs
a if a1 4S a or . . . or am 4S a.

The preorder 4
Ŝv

on B̂ is defined by

a1 ∧ · · · ∧ am 4
Ŝv
a if ∀x ∈ G

c 4S xa1 . . . c 4S xam

c 4S xa
.

Proposition 2.6. Let (B,4S) be a G-ordered set. The G-ordered sets (B̂,4
Ŝs

) and (B̂,4
Ŝv

) endowed
with the operation

x(a1 ∧ · · · ∧ am) = xa1 ∧ · · · ∧ xam (2)
are respectively the minimal and the maximal ideal G-semilattice for (B,4S): every preorder 4 that
makes B̂ an ideal G-semilattice for (B,4S) satisfies

�a 4
Ŝs

�b

�a 4 �b
and

�a 4 �b

�a 4
Ŝv

�b
.

Proof. [Argument in Lor50, Satz 14 and Satz 15, pp. 507–508.] The two preorders make B̂ a semilattice.
The preorder 4

Ŝs
clearly induces 4S on B and is clearly preserved by the operation (2). If 4 is a

preorder that makes B̂ an ideal G-semilattice for B and a1 ∧ · · · ∧ am 4
Ŝs
a, then aµ 4S a for some µ

and therefore a1 ∧ · · · ∧ am 4 a.
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Let us show that 4
Ŝv

induces 4S on B: if a1 4S a, then xa1 4S xa and therefore c 4S xa1 entails
c 4S xa. Conversely, this yields for x the unit and c the element a1 that a1 4S a1 entails a1 4S a, so
that a1 4S a.

Let us show that the operation (2) is 4
Ŝv
-preserving. Suppose that a1 ∧ · · · ∧ am 4

Ŝv
a and let us

show that ya1 ∧ · · · ∧ yam 4
Ŝv
ya: but if c 4S (xy)a1, , . . . , c 4S (xy)am, then c 4S (xy)a.

If 4 is a preorder that makes B̂ an ideal G-semilattice for B, then

c 4S xa1 . . . c 4S xam

c 4 xa1 ∧ · · · ∧ xam
a1 ∧ · · · ∧ am 4 a

xa1 ∧ · · · ∧ xam 4 xa

c 4S xa ,

so that 4
Ŝv

is finer than 4.

Remark 2.7. The ideal semilattice (B̂,4
B̂s

) has been introduced in [Lor39, p. 537], while the ideal
semilattice (B̂,4

B̂v
) dates back to van der Waerden and Prüfer [see Kru35, § 43].

Proposition 2.8. A preorder 4 on B̂ is admissible for 4
B̂s

if and only if (B̂,4) is a G-semilattice and
the preorder induced by 4 on B is finer than 4B.

There may be finer preorders on B that give rise to the same ideal G-semilattice. To make this
precise, let us state the following definition and proposition.

Definition 2.9 ([Lor52, Definition 5, p. 271]). Let 4H be an ideal G-semilattice preorder for (B,4B).
A preorder 4S on B is 4H-admissible if 4S is induced by a preorder 4 that is admissible for 4H :
rules (1) hold and

a 4 b

a 4S b
.

Proposition 2.10. A preorder 4S on B is 4
B̂s
-admissible if and only if it is finer than B.

Proposition 2.11. Let 4H be an ideal G-semilattice preorder for (B,4B). A preorder 4S on B is
4H-admissible if and only if the preorder 4

Ŝv
given in definition 2.5 is admissible for 4H .

Proof. [Argument in Lor50, Satz 17, p. 511.] By proposition 2.6, (B̂,4
Ŝv

) is the finest ideal G-semilattice
for (B,4S): in particular, 4

Ŝv
induces 4S on B.

If 4
Ŝv

is a preorder that is admissible for 4H , then 4S is 4H-admissible by definition.
Conversely, if 4 is a preorder that is admissible for 4H and induces 4S on B, then 4 is finer than 4H ,

and 4
Ŝv

is finer than 4 because 4 makes B̂ an ideal G-semilattice for (B,4S): therefore 4
Ŝv

is finer
than 4H and thus admissible for 4H .

Definition 2.12. Let 4H be an ideal G-semilattice preorder for (B,4B) and consider an 4H-admissible
preorder 4S. The minimal ideal G-semilattice extension 4′S is the conjunction of all ideal G-semilattice
preorders for (B,4S) that are admissible for 4H .

Remark 2.13. Strangely, Lorenzen did not impose in his definition that the extensions must be admissible!
Is this an error or an omission?

Proposition 2.14. Consider the ideal G-semilattice preorder 4
B̂s

for (B,4B) and a 4
B̂s
-admissible

preorder 4S. The minimal ideal semilattice extension of 4S is 4
Ŝs
.

Lemma 2.15. Let 4H be an ideal G-semilattice preorder for (B,4B) and consider 4H-admissible
preorders 4S and 4T such that 4T is finer than 4S. Then 4′T is finer than 4′S.

Proof. Let 4 be an preorder that is admissible for 4H and induces 4S on B. For every preorder 4
T̂

that is admissible for 4H and induces 4T on B, the conjunction of 4 and 4
T̂
is also an extension of 4S

that is admissible for 4H .
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Lemma 2.16. Let 4H be an ideal G-semilattice preorder for (B,4B). If 6S is an 4H-admissible total
preorder on B, then its unique extension to B̂ is the admissible total preorder 6

Ŝ
on B̂ given by

a1 ∧ · · · ∧ am 6
Ŝ
a iff min(a1, . . . , am) 6S a. (3)

Proof. [Argument in Lor50, Satz 18, p. 512.] It suffices to prove that the preorders 6
Ŝs

and 6
Ŝv

in
definition 2.5 coincide with the definition of 6

Ŝ
in (3). This follows at once for 6

Ŝs
. For 6

Ŝv
, note that

c 6S xa1, . . . , c 6S xam hold simultaneously if and only if c 6S xmin(a1, . . . , am).

Definition 2.17 ([Lor52, Definition 6, p. 271]). A G-ordered set B is 4H-principal, where 4H is an ideal
G-semilattice preorder for (B,4B), if its preorder 4B is a conjunction of 4H-admissible total preorders.

Definition 2.18. Let 4H be an ideal G-semilattice preorder for (B,4B). We define the preorder 4Ha

on B̂ by
a1 ∧ · · · ∧ am 4Ha a iff for all 4H-admissible total preorders 6 on B

holds min(a1, . . . , am) 6 a,

and the preorder 4S,Ha for an 4H-admissible preorder 4S by

a1 ∧ · · · ∧ am 4S,Ha a iff for all 4H-admissible total preorders 6 on B
that refine 4S holds min(a1, . . . , am) 6 a.

Proposition 2.19. Let 4H be an ideal G-semilattice preorder for (B,4B). The preorder 4Ha on B̂ is
admissible for 4H .

Proof. The preorder 4Ha is a conjunction of admissible preorders by lemma 2.16.

Corollary 2.20. Let 4H be an ideal G-semilattice preorder for (B,4B). T.f.a.e.

1. B is 4H-principal.

2. (B̂,4Ha) is an ideal G-semilattice for B.

3. The preorder 4Ha induces 4B on B.

4. The preorder 4B is finer than the preorder induced by 4Ha on B.

Proposition 2.21 ([Lor50, Satz 19, p. 512]). Let 4H and 4K be ideal G-semilattice preorders for (B,4B).
Then 4K is a conjunction of total preorders that are admissible for 4H if and only if 4K is a conjunction
of total preorders that are admissible for 4K and every total preorder that is admissible for 4K induces
an 4H-admissible total preorder on G.

Proof. The condition is clearly sufficient. Conversely, let 4 be a preorder that is admissible for 4K and
let 4S be the preorder induced by 4 on B. Then

a1 ∧ · · · ∧ am 4K b

a1 ∧ · · · ∧ am 4 b

a1 ∧ · · · ∧ am 4
Ŝv
b

and
a1 ∧ · · · ∧ am 4H b

a1 ∧ · · · ∧ am 4Ha b

a1 ∧ · · · ∧ am 4K b

.

Therefore 4
Ŝv

is a preorder that is admissible for 4H and 4S is 4H-admissible by proposition 2.11.

The proof shows the following.

Proposition 2.22. Let 4H and 4K be ideal G-semilattice preorders for (B,4B). If 4K is a conjunction
of total preorders that are admissible for 4H , then every preorder that is admissible for 4K induces an
4H-admissible preorder on G.
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Definition 2.23 ([Lor52, Definition 7, p. 271]). Let 4H be an ideal G-semilattice preorder for (B,4B).
An element a of B is 4Ha-dependent from the elements a1, . . . , am ∈ B if

a1 ∧ · · · ∧ am 4Ha a.

An element a of B is 4S,Ha-dependent from the elements a1, . . . , am ∈ B for an 4H-admissible
preorder 4S on B if

a1 ∧ · · · ∧ am 4S,Ha a.

Definition 2.24. Given a pair α = (a1, a2) out of B, we define the 4H-extension 4S[α]H as the con-
junction of all 4H-admissible preorders 4 on B that refine 4S and such that a1 4 a2:

a 4S b

a 4 b
and a1 4 a2.

We let α+1 = (a1, a2) and α−1 = (a2, a1).

Lemma 2.25 ([Lor52, Lemma, p. 272]). An element a is 4S,Ha-dependent from the elements a1, . . . , am
of B if and only if

there are pairs α1, . . . , αe out of B such that for all choices of
signs ε1, . . . , εe ∈ {+1,−1} holds a1 ∧ · · · ∧ am 4′S[αε1

1 ,...,αεee ]H a.
(4)

Proof. If condition (4) holds, consider an 4H-admissible total preorder 6 on B that refines 4S. For
every pair α = (a1, a2) out of B, either a1 6 a2 (set ε = +1) or a2 6 a1 (set ε = −1): therefore 6 also
refines 4S[αε]H . By reiterating this, one proves that 6 also refines 4S[αε1

1 ,...,αεee ]H for some choice of signs
ε1, . . . , εe ∈ {+1,−1}: therefore 6′ refines 4′

S[αε1
1 ,...,αεee ]H

and min(a1, . . . , am) 6 a.
Conversely, suppose that condition (4) does not hold and consider a maximal 4H-admissible pre-

order 4T refining 4S for which condition (4) fails. Let us prove by contradiction that 4T is a total
preorder: let α = (a1, a2) be a pair out of B; if neither a1 6 a2 nor a2 6 a1 did hold, then 4T [α+1]H and
4T [α−1]H would be strictly finer 4H-admissible preorders and thus satisfy condition (4). But this would
correspond to condition (4) for 4T itself. Therefore 4T is a total preorder 6 refining 4S for which
min(a1, . . . , am) 6 a does not hold.

Remark 2.26. One should be able here to check directly that

a1, . . . , am ` a if ∃α1,...,αea1 ∧ · · · ∧ am 4′
S[α±1

1 ,...,α±1
e ]H a

defines a single-conclusion entailment relation in the sense of [Lor51, 1.–4. in Satz 1, p. 84].

Theorem 2.27 ([Lor52, Satz 1, p. 272]). The G-ordered set B is 4H-principal, where 4H is an ideal
G-semilattice preorder for (B,4B), if and only if

a1 4B[αε1
1 ,...,αεee ]H a for all ε1, . . . , εe ∈ {+1,−1}

a1 4B a
. (5)

Proof. By corollary 2.20, B is 4H-principal if and only
a is 4Ha-dependent from a1

a1 4B a
. (6)

By lemma 2.25, if a is 4Ha-dependent from a1, then there are pairs α1, . . . , αe out of B such that
a1 4B[αε1

1 ,...,αεee ]H a for all choices of signs ε1, . . . , εe. This shows that rule (6) may be derived from
rule (5), and therefore sufficiency.

Conversely, lemma 2.25 tells also that

a1 4B[αε1
1 ,...,αεee ]H a for all ε1, . . . , εe ∈ {+1,−1}

a is 4Ha-dependent from a1
.

If B is 4H-principal, rule (6) holds and we derive rule (5).
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3 “Teilbarkeitstheorie in Bereichen” (1952), § 3.
Definition 3.1 ([Lor52, Definition 8, p. 272]). A G-lattice V is a G-semilattice with a preorder 4V , a
meet ∧V and a join ∨V that make it a lattice, and with a monoid G of join-meet-preserving operators
on V :

c 4V a c 4V b

c 4V a ∧V b
,

a 4V c b 4V c

a ∨V b 4V c
,

x(a ∧V b) ≡ xa ∧V xb, x(a ∨V b) ≡ xa ∨V xb.

Remark 3.2. We shall use Fraktur letters a, b, c for elements of a G-lattice.

Definition 3.3. Let (V,4V ,∧V ,∨V ) be a G-lattice. A preorder 4 on V is admissible for 4V if it is
finer than 4V and if (V,4,∧V ,∨V ) is a G-lattice.

Proposition 3.4. A preorder 4 on a G-lattice (V,4V ,∧V ,∨V ) is admissible for 4V if and only if

a 4V b

a 4 b
,

a 4 b

xa 4 xb
,

c 4 a c 4 b

c 4 a ∧V b
,

a 4 c b 4 c

a ∨V b 4 c
. (7)

Definition 3.5. An ideal G-lattice for aG-semilattice (H,4H ,∧H) is a minimal distributiveG-superlattice
for H: this is the set qH of formal joins a = �a1 ∨ · · · ∨ �am of elements of H endowed with a preorder 4V

that extends 4V and makes it a distributive lattice, and with a monoid of operators that extend those
on H:

for all �a, �b ∈ H,
�a 4H �b

�a 4V �b
.

We say that 4V is an ideal G-lattice preorder for H.

Definition 3.6. An ideal G-lattice for a G-ordered set B is a minimal distributive G-superlattice for B:
this is the ideal G-lattice B̃ of formal joins of formal meets of elements of B endowed with a preorder 4V

that extends 4H and makes it a distributive lattice, and with a monoid of operators that extend those
on B. We say that 4V is an ideal G-lattice preorder for B.

Remark 3.7. Ideal G-lattices correspond exactly to entailment relations defined from (B,4B) with an
additional structure given by G: see [Lor51, Satz 7].

Proposition 3.8. An ideal G-lattice for a G-ordered set B is the ideal G-lattice for an ideal G-
semilattice for B.

Proof. It suffices to consider the restriction 4H of the preorder 4V to B̂.

The following constructions will be important.

Definition 3.9. Let (H,4
Ŝ
,∧H) be a G-semilattice. The preorder 4

qSs
on qH is defined by

�a 4
qSs

�a1 ∨ · · · ∨ �am iff �a 4
Ŝ

�a1 or . . . or �a 4
Ŝ

�am. (8)

The preorder 4
qHv

on qH is defined by

�a 4
qSv

�a1 ∨ · · · ∨ �am iff
x�a1 ∧ �b 4

Ŝ
�c . . . x�am ∧ �b 4

Ŝ
�c

x�a ∧ �b 4
Ŝ

�c
. (9)

Proposition 3.10. Let (H,4
Ŝ
,∧H) be a G-semilattice. The G-ordered sets ( qH,4

qSs
) and ( qH,4

qSv
)

endowed with the operation
x(�a1 ∨ · · · ∨ �am) = x�a1 ∨ · · · ∨ x�am (10)

are ideal G-lattices for H: they will be called respectively qHs and qHv and are the coarsest and the finest
ideal G-lattice for H: every preorder 4 on qH that extends (H,4

Ŝ
) and makes qH an ideal G-lattice

for B satisfies
�a 4

qSs
�b

�a 4 �b
and

�a 4 �b

�a 4
qSv

�b
.
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There may be finer preorders on B that give rise to the same ideal G-lattice. To make this precise,
let us state the following definition.

Definition 3.11. Let 4V be an ideal G-lattice preorder for B. A preorder 4S on B is 4V -admissible
if 4S is induced by a preorder 4 that is admissible for 4V : rules (7) hold and

a 4 b

a 4S b
.

Remark 3.12. One should state and prove here a counterpart to proposition 2.11.

Definition 3.13. Let 4V be an ideal G-lattice preorder for B and consider a 4V -admissible preorder 4S.
The minimal ideal lattice extension 4′S is the conjunction of all extensions of 4S to B̃ that are admissible
for 4V .

Lemma 3.14. Let 4V be an ideal G-lattice preorder for B and consider 4V -admissible preorders
4S and 4T such that 4T is finer than 4S. Then 4′T is finer than 4′S.

Lemma 3.15. Let 4V be an ideal G-lattice preorder for B. If 6S is a 4V -admissible total preorder
on B, then its unique extension to B̃ is the admissible total preorder 6

S̃
on B̃ given by

a1 ∧ · · · ∧ am 6
S̃
b1 ∨ · · · ∨ bn iff min(a1, . . . , am) 6S max(b1, . . . , bn). (11)

Proof. [Argument in Lor50, Satz 20, p. 513.] By lemma 2.16, the unique extension of 6S to B̂ is the
total preorder 6

Ŝ
defined in (3). Let us check that the preorders 6

qSs
and 6

qSv
defined in definition 3.9

coincide with the definition of 6
S̃
in (11). This follows at once for 6

qSs
. For 6

qSv
, note that x�a1∧ �b 6

Ŝ
�c,

. . . , x�am ∧ �b 6
Ŝ

�c hold simultaneously if and only if xmax(�a1, . . . , am) ∧ �b 6
Ŝ

�c.

Definition 3.16. A G-ordered set B is 4V -principal, where 4V is an ideal G-lattice preorder, if its
preorder 4B is a conjunction of 4V -admissible total preorders.

Definition 3.17. Let 4V be an ideal G-lattice preorder for B. We define the preorder 4Va on B̃ by

a1 ∧ · · · ∧ am 4Va b1 ∨ · · · ∨ bn iff for all 4V -admissible total preorders 6

on B holds min(a1, . . . , am) 6 max(b1, . . . , bn). (12)

and the preorder 4S,Va for a 4H-admissible preorder 4S by

a1 ∧ · · · ∧ am 4S,Va b1 ∨ · · · ∨ bn iff for all 4V -admissible total preorders 6

on B refining 4S holds min(a1, . . . , am) 6 max(b1, . . . , bn). (13)

Proposition 3.18. Let 4V be an ideal G-lattice preorder for B. The preorder 4Va on B̃ is admissible
for 4V .

Proof. The preorder 4Va is a conjunction of admissible preorders by lemma 3.15.

Corollary 3.19. Let 4V be an ideal G-lattice preorder for B. T.f.a.e.

1. B is 4V -principal.

2. (B̂,4Va) is an ideal G-lattice for B.

3. The preorder 4Va induces 4B on B.

4. The preorder 4B is finer than the preorder induced by 4Va on B.

Remark 3.20. Compare with [Lor50, Satz 21, p. 514] which at first view seems to state the opposite.
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Definition 3.21. Given a pair α = (a1, a2) out of B, we define the 4V -extension 4S[α]V as the conjunc-
tion of all 4V -admissible preorders 4 on B that refine 4S and such that a1 4 a2:

a 4S b

a 4 b
and a1 4 a2.

Lemma 3.22 ([Lor52, Satz 2, p. 273]). The inequality a1∧· · ·∧am 4S,Va b1∨· · ·∨ bn holds for elements
a1, . . . , am, b1, . . . , bn of B and a 4V -admissible preorder 4S on B if and only if there are pairs α1, . . . , αe
out of B such that for all choices of signs ε1, . . . , εe ∈ {+1,−1} we have a1 ∧ · · · ∧ am 4′

S[αε1
1 ,...,αεee ]V

b1 ∨ · · · ∨ bn.

Proof. The same proof as for lemma 2.25.

Remark 3.23. Strangely, Lorenzen states this lemma only under the hypothesis that B is 4V -principal.

Theorem 3.24. A G-ordered set B is 4V -principal, where 4V is an ideal G-lattice preorder for B, if
and only if

a 4B[αε1
1 ,...,αεee ]V b for all ε1, . . . , εe ∈ {+1,−1}

a 4B b
.

Proof. The same proof as for theorem 2.27.

4 “Teilbarkeitstheorie in Bereichen” (1952), § 4.
Definition 4.1 ([Lor52, Definition 9, p. 273]). A G-lattice (V,4V ,∧V ,∨V ) is regular if it is distributive
and if for all a, b in V and x, y in G holds

xa ∧V yb 4V xb ∨V ya. (14)

Proposition 4.2. If 4V is a total preorder 6, then V is regular.

Proof. Let a, b in V . If a 6 b, then xa 6 xb; if b 6 a, then yb 6 ya. In both cases, min(xa, yb) 6
max(xb, ya).

Proposition 4.3. If (V,4V ,∧V ,∨V ) is regular and 4 is admissible for 4V , then (V,4,∧V ,∨V ) is also
regular.

Proof. This follows from the fact that the meets and joins for 4V are equal w.r.t. 4 to the meets and
joins for 4, and that 4 is finer than 4V .

Corollary 4.4. If the preorder 4V of a G-lattice V is a conjunction of admissible total preorders
of (V,4V ), then V is regular.

Theorem 4.5 ([Lor52, Satz 3, p. 274]). The preorder 4V of a G-lattice V is a conjunction of admissible
total preorders of (V,4V ) if and only if V is regular.

Proof. Only sufficiency remains to be proved. For every pair γ = (c1, c2) such that c1 64V c2, we need to
find an admissible total preorder 6 such that c1 
 c2. Consider a maximal admissible preorder 4S on
(V,4V ) with c1 64S c2 and let us consider the orders 4Sβ defined for every pair β = (b1, b2) by

a 4Sβ b if xa ∧ yb1 4S xb ∨ yb2 for all x and y. (15)

Then 4Sβ is admissible. In fact,

• 4Sβ refines 4S: if a 4S b, then xa 4S xb and xa ∧ yb1 4S xb ∨ yb2;

• 4Sβ is transitive: if xa∧yb1 4S xb∨yb2, then xa∧yb1 4S (xb∨yb2)∧yb1 ≡S (xb∧yb1)∨(yb1∧yb2);
if furthermore xb ∧ yb1 4S xc ∨ yb2, then xa ∧ yb1 4S (xc ∨ yb2) ∨ (yb1 ∧ yb2) ≡S xc ∨ yb2;
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• every z preserves 4Sβ : if a 4Sβ b, then (xz)a∧yb1 4S (xz)b∨yb2 for all x and y, that is, za 4Sβ zb;

• 4Sβ preserves meets: if xc ∧ yb1 4S xa ∨ yb2 and xc ∧ yb1 4S xb ∨ yb2, then xc ∧ yb1 4S

(xa ∨ yb2) ∧ (xb ∨ yb2) ≡S (xa ∧ xb) ∨ (xa ∧ yb2) ∨ (yb2 ∧ xb) ∨ yb2 ≡S x(a ∧ b) ∨ yb2;

• dually, 4Sβ also preserves joins.

Furthermore, 4Sγ is 4S by maximality, for if we had c1 4Sγ c2, then c1 4S c2 would hold by letting
x and y be the identical operator in the definition of Sγ.

Let us prove that 4S is a total preorder and suppose that b2 64S b1: note that b2 4Sβ b1 by regularity,
so that 4Sβ is strictly finer than 4S; by maximality holds c1 4Sβ c2. But then, by the symmetry of
definition (15), b1 4Sγ b2.

Remark 4.6. This proof is still not too involved because the lattice structure of V and the semigroup
structure of G do not interfere too much.

5 “Die Erweiterung halbgeordneter Gruppen zu
Verbandsgruppen” (1953), § 1.

Lemma 3.22 shows that if one starts by letting 4Va be the preorder on B̃ given by

a1 ∧ · · · ∧ am 4Va b1 ∨ · · · ∨ bn iff ∃α1,...,αe a1 ∧ · · · ∧ am 4′
B[α±1

1 ,...,α±1
e ]V b1 ∨ · · · ∨ bn (16)

one defines a regular distributive G-lattice. This distributivity may be proved directly by showing
that (16) defines an entailment relation [argument in Lor53, pp. 16–17]. Regularity may also be proved
directly [argument in Lor53, pp. 17–18].

6 “Die Erweiterung halbgeordneter Gruppen zu
Verbandsgruppen” (1953), § 2.

In the case of a preordered group G, its ideal lattice (G̃,4V ) is already determined by its ideal
semilattice (Ĝ,4H): as (b1 ∨ · · · ∨ bn)(b−1

1 ∧ · · · ∧ b−1
n ) = 1, one has

a1 ∧ · · · ∧ am 4V b1 ∨ · · · ∨ bn iff a1b
−1
1 ∧ · · · ∧ amb−1

n 4H 1.

One can therefore resort to lemma 2.25 and try to start by letting 4Ha be the preorder given on G̃ by

a1 ∧ · · · ∧ am 4Ha b1 ∨ · · · ∨ bn iff ∃γ1,...,γe a1b
−1
1 ∧ · · · ∧ amb−1

n 4′
B[γ±1

1 ,...,γ±1
e ]H 1 (17)

and prove that this defines a distributive lattice domain (G̃,4Ha) by analogy with section 5. This is
straightforward. Furthermore holds

Theorem 6.1 ([Lor53, Satz 1, p. 18]). (G̃,4Ha) is a regular lattice group.

The proof of theorem 6.1 takes 5 pages: [Lor53, pp. 18-22].

Proposition 6.2. Let (G,4,∧,∨) be a lattice group. T.f.a.e.

1. G is regular.

2. xa ∧ by 4 xb ∨ ay.

3. a ∧ xax
−1 ≡ 1

a ≡ 1

4.
a ∧ b 4 1

a ∧ xbx−1 4 1

9



5. a−1 ∧ xax−1 4 1.

It turns out [see Lor53, p. 23] that in any lattice group hold the following properties (without
supposing regularity).

• ab−1 ∧ ba−1 4 1.

• c1c
−1
2 ∧ · · · ∧ cn−1c

−1
n ∧ cnc−1

1 4 1.

• a1bν1 ∧ · · · ∧ ambνm 4 aµ1b1 ∨ · · · ∨ aµnbn for any choice of ν1, . . . , νm between 1 and n and any
choice of µ1, . . . , µn between 1 and m.

7 “Die Erweiterung halbgeordneter Gruppen zu
Verbandsgruppen” (1953), § 3.

In section 6, a regular lattice group (G̃,4Ha) has been defined for every ideal semilattice preorder 4H

for a preordered group (G,4G). This lattice group is an ideal lattice domain for G if the preorder 4Ha

is an extension of the preorder of G: this is captured by

Definition 7.1. A group G is 4H-closed if

a 4G[α±1
1 ,...,α±1

l
]H 1

a 4G 1
.

In the case of a field in which a relation of divisibility is defined by an integral domain I and whose
(commutative) multiplicative group G is therefore associated to the ideal semilattice (Hd,4d) of the
Dedekind ideals of I, the 4d-admissible preorders of G are in bijection with the overrings for I. The
preorder 4G[γ]d corresponds for the pair γ = (a, b) to the integral domain I[a−1b].

An element a is 4d-dependent from I if and only if there are c1, . . . , cm such that a ∈ I[c±1
1 , . . . , c±1

l ]
for every choice of signs; the condition of 4d-closedness (the so-called “integral closedness”) spells

a ∈ I[c±1
1 , . . . , c±1

l ]
a ∈ I

.

The definition of the regular lattice preorder 4da spells

a1 ∧ · · · ∧ am 4da b1 ∨ · · · ∨ bn iff ∃c1,...,ce 1 ∈ (a1b
−1
1 , . . . , amb

−1
n )I[c±1

1 , . . . , c±1
e ]

iff ∃k 1 ∈
k∑
κ=1

(a1b
−1
1 , . . . , amb

−1
n )κ.

(18)

Remark 7.2. The rôle of the hypothesis of 4d-closedness here is not clear to me.
The last equivalence results from

Theorem 7.3 ([Lor53, Satz 2, p. 24]).

∃c1,...,ce 1 ∈ (a1, . . . , am)I[c±1
1 , . . . , c±1

e ] iff ∃k 1 ∈
k∑
κ=1

(a1, . . . , am)κ.

This shows that in the case n = 1, the definition of 4da turns into the usual definition of integral
dependence:

a1 ∧ · · · ∧ am 4da b iff bk + c1b
k−1 + · · ·+ ck = 0 for some k and cκ ∈ (a1, . . . , am)κ.
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