Lorenzen's theory of divisibility in monoid-preordered sets

1 "Teilbarkeitstheorie in Bereichen" (1952), § 1.

Definition 1.1 ([Lor52, Definition 1, p. 270]). A *G*-ordered set *B* is a set with a preorder \preccurlyeq_B and a monoid *G* of order-preserving operators on *B*:

$$a \preccurlyeq_B a, \quad \frac{a \preccurlyeq_B b \quad b \preccurlyeq_B c}{a \preccurlyeq_B c}, \quad \frac{a \preccurlyeq_B b}{xa \preccurlyeq_B xb}$$

If $a \preccurlyeq_B b$ and $b \preccurlyeq_B a$ hold, then we say that a and b are equal w.r.t. \preccurlyeq_B and write $a \equiv_B b$.

Remark 1.2. We shall use latin letters a, b, c for elements of a G-ordered set and latin letters x, y, z for elements of a monoid.

Definition 1.3 ([Lor52, Definition 2, p. 270]). A *G*-semilattice *H* is a *G*-ordered set with a preorder \preccurlyeq_H and a meet \land_H that make it a semilattice, and with a monoid *G* of meet-preserving operators on *H*:

$$\frac{\mathscr{N} \preccurlyeq_H \mathscr{A} \quad \mathscr{N} \preccurlyeq_H \mathscr{B}}{\mathscr{N} \preccurlyeq_H \mathscr{A} \wedge_H \mathscr{B}}, \quad x(\mathscr{A} \wedge_H \mathscr{B}) \equiv_H x\mathscr{A} \wedge_H x\mathscr{B}.$$

Remark 1.4. We shall use Kurrent letters α , ϑ , π for elements of a G-semilattice.

There may be finer meet-preserving preorders on a G-semilattice H for which the operators in G are still meet-preserving. To make this precise, let us state the following definition and proposition.

Definition 1.5 ([Lor52, Definition 3, p. 270]). Let $(H, \preccurlyeq_H, \land_H)$ be a *G*-semilattice. A preorder \preccurlyeq on *H* is *admissible for* \preccurlyeq_H if it is finer than \preccurlyeq_H and if $(H, \preccurlyeq, \land_H)$ is a *G*-semilattice.

Proposition 1.6. A preorder \preccurlyeq on a G-semilattice $(H, \preccurlyeq_H, \land_H)$ is admissible for \preccurlyeq_H if and only if

$$\frac{\mu \preccurlyeq_H \delta}{\mu \preccurlyeq \delta}, \quad \frac{\mu \preccurlyeq \delta}{x \mu \preccurlyeq x \delta}, \quad \frac{\nu \preccurlyeq \mu \checkmark \psi \preccurlyeq \delta}{\nu \preccurlyeq \mu \wedge_H \delta}.$$
(1)

Proof. [Argument in Lor50, p. 499.] As $u \wedge_H b \preccurlyeq_H u$ and $u \wedge_H b \preccurlyeq_H b$, the first condition implies that $u \wedge_H b \preccurlyeq u$ and $u \wedge_H b \preccurlyeq b$, so that with the third condition $u \wedge_H b$ is equal w.r.t. \preccurlyeq to the meet of u and b w.r.t. \preccurlyeq :

$$\frac{\pi \preccurlyeq \pi \qquad \pi \preccurlyeq \pi}{\pi \preccurlyeq \pi \land h}.$$

As any x satisfies $x(a \wedge_H b) \equiv_H xa \wedge_H xb$, the first condition shows that $x(a \wedge_H b)$ and $xa \wedge_H xb$ are also equal w.r.t. \preccurlyeq .

Proposition 1.7. A conjunction of admissible preorders is admissible.

2 "Teilbarkeitstheorie in Bereichen" (1952), § 2.

Definition 2.1 ([Lor52, Definition 4, p. 270]). An *ideal G-semilattice* for a *G*-ordered set (B, \preccurlyeq_B) is a minimal *G*-supersemilattice for *B*: this is the set \hat{B} of formal meets (that is, finite lists) $a = a_1 \wedge \cdots \wedge a_m$ of elements of *B* endowed with a preorder \preccurlyeq_H that extends \preccurlyeq_B and makes it a semilattice, and with a monoid of operators that extend those on *B*:

for all
$$a, b \in B$$
, $\frac{a \preccurlyeq_B b}{a \preccurlyeq_H b}$.

We say that \preccurlyeq_H is an *ideal G-semilattice preorder* for (B, \preccurlyeq_B) .

Remark 2.2. It is a question of taste whether to define formal meets as lists or as multisets (lists up to permutation) or as sets (multisets with contraction).

Remark 2.3. Lorenzen [Lor50, pp. 503–505] proves the equivalence of this definition with the one proposed by Prüfer [Prü32]. In fact, if one considers the finite meets α as sets, an ideal *G*-semilattice preorder \preccurlyeq_H is given by an application $\alpha \mapsto \alpha_r$ into the subsets of *B* endowed with the relation of containment, where the application satisfies

- 1. $\alpha \subseteq \alpha_r$;
- 2. if $\alpha \subseteq \&_r$, then $\alpha_r \subseteq \&_r$;
- 3. if $a \in B$, then $\{a\}_r = \{b \mid a \preccurlyeq_B b\};$

4.
$$x\alpha_r = (x\alpha)_r$$
.

Jaffard [Jaf60, p. 120] states condition 2 with the weaker hypothesis $u \subseteq b$, but this is probably a typo. Then $u_r = \{ a \in B : u \preccurlyeq_H a \}.$

Remark 2.4. Ideal G-semilattices correspond exactly to single-statement entailment relations defined from (B, \preccurlyeq_B) with an additional structure given by G: see [Lor51, Satz 3].

The following constructions will be important.

Definition 2.5. Let \preccurlyeq_S be any preorder that makes (B, \preccurlyeq_S) a *G*-ordered set. The preorder $\preccurlyeq_{\widehat{S}_s}$ on \widehat{B} is defined by

$$a_1 \wedge \cdots \wedge a_m \preccurlyeq_{\widehat{S}_s} a \text{ if } a_1 \preccurlyeq_S a \text{ or } \dots \text{ or } a_m \preccurlyeq_S a.$$

The preorder $\preccurlyeq_{\widehat{S}_v}$ on \widehat{B} is defined by

$$a_1 \wedge \dots \wedge a_m \preccurlyeq_{\widehat{S}_v} a \quad \text{if} \quad \forall x \in G \ \frac{c \preccurlyeq_S x a_1 \quad \dots \quad c \preccurlyeq_S x a_m}{c \preccurlyeq_S x a}$$

Proposition 2.6. Let (B, \preccurlyeq_S) be a G-ordered set. The G-ordered sets $(\widehat{B}, \preccurlyeq_{\widehat{S}_s})$ and $(\widehat{B}, \preccurlyeq_{\widehat{S}_v})$ endowed with the operation

$$x(a_1 \wedge \dots \wedge a_m) = xa_1 \wedge \dots \wedge xa_m \tag{2}$$

are respectively the minimal and the maximal ideal G-semilattice for (B, \preccurlyeq_S) : every preorder \preccurlyeq that makes \hat{B} an ideal G-semilattice for (B, \preccurlyeq_S) satisfies

$$\frac{\mathfrak{u} \preccurlyeq_{\widehat{S}_s} \mathfrak{b}}{\mathfrak{u} \preccurlyeq \mathfrak{b}} \quad \text{and} \quad \frac{\mathfrak{u} \preccurlyeq \mathfrak{b}}{\mathfrak{u} \preccurlyeq_{\widehat{S}_v} \mathfrak{b}}.$$

Proof. [Argument in Lor50, Satz 14 and Satz 15, pp. 507–508.] The two preorders make \hat{B} a semilattice.

The preorder $\preccurlyeq_{\widehat{S}_s}$ clearly induces \preccurlyeq_S on B and is clearly preserved by the operation (2). If \preccurlyeq is a preorder that makes \widehat{B} an ideal G-semilattice for B and $a_1 \wedge \cdots \wedge a_m \preccurlyeq_{\widehat{S}_s} a$, then $a_{\mu} \preccurlyeq_S a$ for some μ and therefore $a_1 \wedge \cdots \wedge a_m \preccurlyeq a$.

Let us show that $\preccurlyeq_{\widehat{S}_v}$ induces \preccurlyeq_S on B: if $a_1 \preccurlyeq_S a$, then $xa_1 \preccurlyeq_S xa$ and therefore $c \preccurlyeq_S xa_1$ entails $c \preccurlyeq_S xa$. Conversely, this yields for x the unit and c the element a_1 that $a_1 \preccurlyeq_S a_1$ entails $a_1 \preccurlyeq_S a$, so that $a_1 \preccurlyeq_S a$.

Let us show that the operation (2) is $\preccurlyeq_{\widehat{S}_v}$ -preserving. Suppose that $a_1 \wedge \cdots \wedge a_m \preccurlyeq_{\widehat{S}_v} a$ and let us show that $ya_1 \wedge \cdots \wedge ya_m \preccurlyeq_{\widehat{S}_v} ya$: but if $c \preccurlyeq_S (xy)a_1, \ldots, c \preccurlyeq_S (xy)a_m$, then $c \preccurlyeq_S (xy)a$.

If \preccurlyeq is a preorder that makes \hat{B} an ideal G-semilattice for B, then

$$\frac{c \preccurlyeq_S xa_1 \dots c \preccurlyeq_S xa_m}{c \preccurlyeq xa_1 \wedge \dots \wedge xa_m} \quad \frac{a_1 \wedge \dots \wedge a_m \preccurlyeq a}{xa_1 \wedge \dots \wedge xa_m \preccurlyeq xa},$$

so that $\preccurlyeq_{\widehat{S}_n}$ is finer than \preccurlyeq .

Remark 2.7. The ideal semilattice $(\hat{B}, \preccurlyeq_{\widehat{B}_s})$ has been introduced in [Lor39, p. 537], while the ideal semilattice $(\hat{B}, \preccurlyeq_{\widehat{B}_s})$ dates back to van der Waerden and Prüfer [see Kru35, § 43].

Proposition 2.8. A preorder \preccurlyeq on \hat{B} is admissible for $\preccurlyeq_{\hat{B}_s}$ if and only if (\hat{B}, \preccurlyeq) is a *G*-semilattice and the preorder induced by \preccurlyeq on *B* is finer than \preccurlyeq_B .

There may be finer preorders on B that give rise to the same ideal G-semilattice. To make this precise, let us state the following definition and proposition.

Definition 2.9 ([Lor52, Definition 5, p. 271]). Let \preccurlyeq_H be an ideal *G*-semilattice preorder for (B, \preccurlyeq_B) . A preorder \preccurlyeq_S on *B* is \preccurlyeq_H -admissible if \preccurlyeq_S is induced by a preorder \preccurlyeq that is admissible for \preccurlyeq_H : rules (1) hold and

$$\frac{a \preccurlyeq b}{a \preccurlyeq_S b}$$

Proposition 2.10. A preorder \preccurlyeq_S on B is $\preccurlyeq_{\widehat{B}_s}$ -admissible if and only if it is finer than B.

Proposition 2.11. Let \preccurlyeq_H be an ideal *G*-semilattice preorder for (B, \preccurlyeq_B) . A preorder \preccurlyeq_S on *B* is \preccurlyeq_H -admissible if and only if the preorder $\preccurlyeq_{\widehat{S}_n}$ given in definition 2.5 is admissible for \preccurlyeq_H .

Proof. [Argument in Lor50, Satz 17, p. 511.] By proposition 2.6, $(B, \preccurlyeq_{\widehat{S}_v})$ is the finest ideal *G*-semilattice for (B, \preccurlyeq_S) : in particular, $\preccurlyeq_{\widehat{S}_v}$ induces \preccurlyeq_S on *B*.

If $\preccurlyeq_{\widehat{S}_v}$ is a preorder that is admissible for \preccurlyeq_H , then \preccurlyeq_S is \preccurlyeq_H -admissible by definition.

Conversely, if \preccurlyeq is a preorder that is admissible for \preccurlyeq_H and induces \preccurlyeq_S on B, then \preccurlyeq is finer than \preccurlyeq_H , and $\preccurlyeq_{\widehat{S}_v}$ is finer than \preccurlyeq because \preccurlyeq makes \widehat{B} an ideal G-semilattice for (B, \preccurlyeq_S) : therefore $\preccurlyeq_{\widehat{S}_v}$ is finer than \preccurlyeq_H and thus admissible for \preccurlyeq_H .

Definition 2.12. Let \preccurlyeq_H be an ideal *G*-semilattice preorder for (B, \preccurlyeq_B) and consider an \preccurlyeq_H -admissible preorder \preccurlyeq_S . The *minimal ideal G-semilattice extension* \preccurlyeq'_S is the conjunction of all ideal *G*-semilattice preorders for (B, \preccurlyeq_S) that are admissible for \preccurlyeq_H .

Remark 2.13. Strangely, Lorenzen did not impose in his definition that the extensions must be admissible! Is this an error or an omission?

Proposition 2.14. Consider the ideal *G*-semilattice preorder $\preccurlyeq_{\widehat{B}_s}$ for (B, \preccurlyeq_B) and a $\preccurlyeq_{\widehat{B}_s}$ -admissible preorder \preccurlyeq_S . The minimal ideal semilattice extension of \preccurlyeq_S is $\preccurlyeq_{\widehat{S}_s}$.

Lemma 2.15. Let \preccurlyeq_H be an ideal *G*-semilattice preorder for (B, \preccurlyeq_B) and consider \preccurlyeq_H -admissible preorders \preccurlyeq_S and \preccurlyeq_T such that \preccurlyeq_T is finer than \preccurlyeq_S . Then \preccurlyeq'_T is finer than \preccurlyeq'_S .

Proof. Let \preccurlyeq be an preorder that is admissible for \preccurlyeq_H and induces \preccurlyeq_S on B. For every preorder $\preccurlyeq_{\widehat{T}}$ that is admissible for \preccurlyeq_H and induces \preccurlyeq_T on B, the conjunction of \preccurlyeq and $\preccurlyeq_{\widehat{T}}$ is also an extension of \preccurlyeq_S that is admissible for \preccurlyeq_H .

Lemma 2.16. Let \preccurlyeq_H be an ideal *G*-semilattice preorder for (B, \preccurlyeq_B) . If \leqslant_S is an \preccurlyeq_H -admissible total preorder on *B*, then its unique extension to \hat{B} is the admissible total preorder $\leqslant_{\hat{S}}$ on \hat{B} given by

$$a_1 \wedge \dots \wedge a_m \leqslant_{\widehat{S}} a \quad iff \quad \min(a_1, \dots, a_m) \leqslant_S a.$$
 (3)

Proof. [Argument in Lor50, Satz 18, p. 512.] It suffices to prove that the preorders $\leq_{\widehat{S}_s}$ and $\leq_{\widehat{S}_v}$ in definition 2.5 coincide with the definition of $\leq_{\widehat{S}}$ in (3). This follows at once for $\leq_{\widehat{S}_s}$. For $\leq_{\widehat{S}_v}$, note that $c \leq_S xa_1, \ldots, c \leq_S xa_m$ hold simultaneously if and only if $c \leq_S x \min(a_1, \ldots, a_m)$.

Definition 2.17 ([Lor52, Definition 6, p. 271]). A *G*-ordered set *B* is \preccurlyeq_H -principal, where \preccurlyeq_H is an ideal *G*-semilattice preorder for (B, \preccurlyeq_B) , if its preorder \preccurlyeq_B is a conjunction of \preccurlyeq_H -admissible total preorders.

Definition 2.18. Let \preccurlyeq_H be an ideal *G*-semilattice preorder for (B, \preccurlyeq_B) . We define the preorder \preccurlyeq_{H_a} on \hat{B} by

 $a_1 \wedge \cdots \wedge a_m \preccurlyeq_{H_a} a$ iff for all \preccurlyeq_H -admissible total preorders \leqslant on B holds $\min(a_1, \ldots, a_m) \leqslant a$,

and the preorder \preccurlyeq_{S,H_a} for an \preccurlyeq_H -admissible preorder \preccurlyeq_S by

 $a_1 \wedge \cdots \wedge a_m \preccurlyeq_{S,H_a} a$ iff for all \preccurlyeq_H -admissible total preorders \leqslant on Bthat refine \preccurlyeq_S holds $\min(a_1, \ldots, a_m) \leqslant a$.

Proposition 2.19. Let \preccurlyeq_H be an ideal *G*-semilattice preorder for (B, \preccurlyeq_B) . The preorder \preccurlyeq_{H_a} on \hat{B} is admissible for \preccurlyeq_H .

Proof. The preorder \preccurlyeq_{H_a} is a conjunction of admissible preorders by lemma 2.16.

Corollary 2.20. Let \preccurlyeq_H be an ideal *G*-semilattice preorder for (B, \preccurlyeq_B) . T.f.a.e.

- 1. B is \preccurlyeq_H -principal.
- 2. $(\hat{B}, \preccurlyeq_{H_a})$ is an ideal G-semilattice for B.
- 3. The preorder \preccurlyeq_{H_a} induces \preccurlyeq_B on B.
- 4. The preorder \preccurlyeq_B is finer than the preorder induced by \preccurlyeq_{H_a} on B.

Proposition 2.21 ([Lor50, Satz 19, p. 512]). Let \preccurlyeq_H and \preccurlyeq_K be ideal *G*-semilattice preorders for (B, \preccurlyeq_B) . Then \preccurlyeq_K is a conjunction of total preorders that are admissible for \preccurlyeq_H if and only if \preccurlyeq_K is a conjunction of total preorders that are admissible for \preccurlyeq_K and every total preorder that is admissible for \preccurlyeq_K induces an \preccurlyeq_H -admissible total preorder on *G*.

Proof. The condition is clearly sufficient. Conversely, let \preccurlyeq be a preorder that is admissible for \preccurlyeq_K and let \preccurlyeq_S be the preorder induced by \preccurlyeq on B. Then

$\underline{a_1 \wedge \cdots \wedge a_m \preccurlyeq_K b}$		$a_1 \wedge \cdots \wedge a_m \preccurlyeq_H b$
$a_1 \wedge \dots \wedge a_m \preccurlyeq b$	and	$\overline{a_1 \wedge \cdots \wedge a_m \preccurlyeq_{H_a} b}.$
$a_1 \wedge \cdots \wedge a_m \preccurlyeq_{\widehat{S}_v} b$		$\overline{a_1 \wedge \cdots \wedge a_m \preccurlyeq_K b}$

Therefore $\preccurlyeq_{\widehat{S}_{u}}$ is a preorder that is admissible for \preccurlyeq_{H} and \preccurlyeq_{S} is \preccurlyeq_{H} -admissible by proposition 2.11. \Box

The proof shows the following.

Proposition 2.22. Let \preccurlyeq_H and \preccurlyeq_K be ideal *G*-semilattice preorders for (B, \preccurlyeq_B) . If \preccurlyeq_K is a conjunction of total preorders that are admissible for \preccurlyeq_H , then every preorder that is admissible for \preccurlyeq_K induces an \preccurlyeq_H -admissible preorder on *G*.

Definition 2.23 ([Lor52, Definition 7, p. 271]). Let \preccurlyeq_H be an ideal *G*-semilattice preorder for (B, \preccurlyeq_B) . An element *a* of *B* is \preccurlyeq_{H_a} -dependent from the elements $a_1, \ldots, a_m \in B$ if

$$a_1 \wedge \cdots \wedge a_m \preccurlyeq_{H_a} a.$$

An element a of B is \preccurlyeq_{S,H_a} -dependent from the elements $a_1, \ldots, a_m \in B$ for an \preccurlyeq_H -admissible preorder \preccurlyeq_S on B if

$$a_1 \wedge \cdots \wedge a_m \preccurlyeq_{S,H_a} a.$$

Definition 2.24. Given a pair $\alpha = (a_1, a_2)$ out of B, we define the \preccurlyeq_H -extension $\preccurlyeq_{S[\alpha]_H}$ as the conjunction of all \preccurlyeq_H -admissible preorders \preccurlyeq on B that refine \preccurlyeq_S and such that $a_1 \preccurlyeq a_2$:

$$\frac{a \preccurlyeq_S b}{a \preccurlyeq b} \quad \text{and} \quad a_1 \preccurlyeq a_2.$$

We let $\alpha^{+1} = (a_1, a_2)$ and $\alpha^{-1} = (a_2, a_1)$.

Lemma 2.25 ([Lor52, Lemma, p. 272]). An element a is \preccurlyeq_{S,H_a} -dependent from the elements a_1, \ldots, a_m of B if and only if

there are pairs
$$\alpha_1, \ldots, \alpha_e$$
 out of B such that for all choices of
signs $\varepsilon_1, \ldots, \varepsilon_e \in \{+1, -1\}$ holds $a_1 \wedge \cdots \wedge a_m \preccurlyeq'_{S[\alpha_1^{\varepsilon_1}, \ldots, \alpha_e^{\varepsilon_e}]_H} a.$ (4)

Proof. If condition (4) holds, consider an \preccurlyeq_H -admissible total preorder \leqslant on B that refines \preccurlyeq_S . For every pair $\alpha = (a_1, a_2)$ out of B, either $a_1 \leqslant a_2$ (set $\varepsilon = +1$) or $a_2 \leqslant a_1$ (set $\varepsilon = -1$): therefore \leqslant also refines $\preccurlyeq_{S[\alpha^{\varepsilon}]_H}$. By reiterating this, one proves that \leqslant also refines $\preccurlyeq_{S[\alpha_1^{\varepsilon_1},\ldots,\alpha_e^{\varepsilon_e}]_H}$ for some choice of signs $\varepsilon_1,\ldots,\varepsilon_e \in \{+1,-1\}$: therefore \leqslant' refines $\preccurlyeq'_{S[\alpha_1^{\varepsilon_1},\ldots,\alpha_e^{\varepsilon_e}]_H}$ and $\min(a_1,\ldots,a_m) \leqslant a$.

Conversely, suppose that condition (4) does not hold and consider a maximal \preccurlyeq_H -admissible preorder \preccurlyeq_T refining \preccurlyeq_S for which condition (4) fails. Let us prove by contradiction that \preccurlyeq_T is a total preorder: let $\alpha = (a_1, a_2)$ be a pair out of B; if neither $a_1 \leq a_2$ nor $a_2 \leq a_1$ did hold, then $\preccurlyeq_T [\alpha^{+1}]_H$ and $\preccurlyeq_T [\alpha^{-1}]_H$ would be strictly finer \preccurlyeq_H -admissible preorders and thus satisfy condition (4). But this would correspond to condition (4) for \preccurlyeq_T itself. Therefore \preccurlyeq_T is a total preorder \leqslant refining \preccurlyeq_S for which $\min(a_1, \ldots, a_m) \leq a$ does not hold.

Remark 2.26. One should be able here to check directly that

$$a_1, \ldots, a_m \vdash a \quad \text{if} \quad \exists_{\alpha_1, \ldots, \alpha_e} a_1 \wedge \cdots \wedge a_m \preccurlyeq'_{S[\alpha_1^{\pm 1}, \ldots, \alpha_e^{\pm 1}]_H} a_{a_1, \ldots, a_n} = a_{\alpha_1, \ldots, \alpha_e} a_{\alpha_1, \ldots, \alpha_e}$$

defines a single-conclusion entailment relation in the sense of [Lor51, 1.–4. in Satz 1, p. 84].

Theorem 2.27 ([Lor52, Satz 1, p. 272]). The G-ordered set B is \preccurlyeq_H -principal, where \preccurlyeq_H is an ideal G-semilattice preorder for (B, \preccurlyeq_B) , if and only if

$$\frac{a_1 \preccurlyeq_{B[\alpha_1^{\varepsilon_1}, \dots, \alpha_e^{\varepsilon_e}]_H} a \quad \text{for all } \varepsilon_1, \dots, \varepsilon_e \in \{+1, -1\}}{a_1 \preccurlyeq_B a}.$$
(5)

Proof. By corollary 2.20, B is \preccurlyeq_H -principal if and only

$$\frac{a \text{ is } \preccurlyeq_{H_a} \text{-dependent from } a_1}{a_1 \preccurlyeq_B a}.$$
(6)

By lemma 2.25, if a is \preccurlyeq_{H_a} -dependent from a_1 , then there are pairs $\alpha_1, \ldots, \alpha_e$ out of B such that $a_1 \preccurlyeq_{B[\alpha_1^{\varepsilon_1}, \ldots, \alpha_e^{\varepsilon_e}]_H} a$ for all choices of signs $\varepsilon_1, \ldots, \varepsilon_e$. This shows that rule (6) may be derived from rule (5), and therefore sufficiency.

Conversely, lemma 2.25 tells also that

$$\frac{a_1 \preccurlyeq_{B[\alpha_1^{\varepsilon_1}, \dots, \alpha_e^{\varepsilon_e}]_H} a \quad \text{for all } \varepsilon_1, \dots, \varepsilon_e \in \{+1, -1\}}{a \text{ is } \preccurlyeq_{H_a} \text{-dependent from } a_1}$$

If B is \preccurlyeq_H -principal, rule (6) holds and we derive rule (5).

3 "Teilbarkeitstheorie in Bereichen" (1952), § 3.

Definition 3.1 ([Lor52, Definition 8, p. 272]). A *G*-lattice V is a *G*-semilattice with a preorder \preccurlyeq_V , a meet \land_V and a join \lor_V that make it a lattice, and with a monoid G of join-meet-preserving operators on V:

$$\frac{\mathfrak{c} \preccurlyeq_{V} \mathfrak{a} \quad \mathfrak{c} \preccurlyeq_{V} \mathfrak{b}}{\mathfrak{c} \preccurlyeq_{V} \mathfrak{a} \wedge_{V} \mathfrak{b}}, \quad \frac{\mathfrak{a} \preccurlyeq_{V} \mathfrak{c} \quad \mathfrak{b} \preccurlyeq_{V} \mathfrak{c}}{\mathfrak{a} \vee_{V} \mathfrak{b} \preccurlyeq_{V} \mathfrak{c}},$$
$$x(\mathfrak{a} \wedge_{V} \mathfrak{b}) \equiv x\mathfrak{a} \wedge_{V} x\mathfrak{b}, \quad x(\mathfrak{a} \vee_{V} \mathfrak{b}) \equiv x\mathfrak{a} \vee_{V} x\mathfrak{b}.$$

Remark 3.2. We shall use Fraktur letters \mathfrak{a} , \mathfrak{b} , \mathfrak{c} for elements of a *G*-lattice.

Definition 3.3. Let $(V, \preccurlyeq_V, \land_V, \lor_V)$ be a *G*-lattice. A preorder \preccurlyeq on *V* is *admissible for* \preccurlyeq_V if it is finer than \preccurlyeq_V and if $(V, \preccurlyeq, \land_V, \lor_V)$ is a *G*-lattice.

Proposition 3.4. A preorder \preccurlyeq on a *G*-lattice $(V, \preccurlyeq_V, \land_V, \lor_V)$ is admissible for \preccurlyeq_V if and only if

$$\frac{\mathfrak{a} \preccurlyeq_V \mathfrak{b}}{\mathfrak{a} \preccurlyeq \mathfrak{b}}, \quad \frac{\mathfrak{a} \preccurlyeq \mathfrak{b}}{x\mathfrak{a} \preccurlyeq x\mathfrak{b}}, \quad \frac{\mathfrak{c} \preccurlyeq \mathfrak{a} \quad \mathfrak{c} \preccurlyeq \mathfrak{b}}{\mathfrak{c} \preccurlyeq \mathfrak{a} \wedge_V \mathfrak{b}}, \quad \frac{\mathfrak{a} \preccurlyeq \mathfrak{c} \quad \mathfrak{b} \preccurlyeq \mathfrak{c}}{\mathfrak{a} \vee_V \mathfrak{b} \preccurlyeq \mathfrak{c}}.$$
(7)

Definition 3.5. An *ideal G-lattice* for a *G*-semilattice $(H, \preccurlyeq_H, \land_H)$ is a minimal distributive *G*-superlattice for *H*: this is the set \check{H} of formal joins $\mathfrak{a} = a_1 \lor \cdots \lor a_m$ of elements of *H* endowed with a preorder \preccurlyeq_V that extends \preccurlyeq_V and makes it a distributive lattice, and with a monoid of operators that extend those on *H*:

for all
$$a, b \in H$$
, $\frac{a \preccurlyeq_H b}{a \preccurlyeq_V b}$.

We say that \preccurlyeq_V is an *ideal G-lattice preorder* for *H*.

Definition 3.6. An *ideal G-lattice* for a *G*-ordered set *B* is a minimal distributive *G*-superlattice for *B*: this is the ideal *G*-lattice \tilde{B} of formal joins of formal meets of elements of *B* endowed with a preorder \preccurlyeq_V that extends \preccurlyeq_H and makes it a distributive lattice, and with a monoid of operators that extend those on *B*. We say that \preccurlyeq_V is an *ideal G-lattice preorder* for *B*.

Remark 3.7. Ideal G-lattices correspond exactly to entailment relations defined from (B, \preccurlyeq_B) with an additional structure given by G: see [Lor51, Satz 7].

Proposition 3.8. An ideal G-lattice for a G-ordered set B is the ideal G-lattice for an ideal G-semilattice for B.

Proof. It suffices to consider the restriction \preccurlyeq_H of the preorder \preccurlyeq_V to B.

The following constructions will be important.

Definition 3.9. Let $(H, \preccurlyeq_{\widehat{S}}, \land_H)$ be a *G*-semilattice. The preorder $\preccurlyeq_{\check{S}_s}$ on \check{H} is defined by

 $\mathcal{A} \preccurlyeq_{\widetilde{S}_s} \mathcal{U}_1 \lor \cdots \lor \mathcal{U}_m \quad \text{iff} \quad \mathcal{A} \preccurlyeq_{\widehat{S}} \mathcal{U}_1 \text{ or } \dots \text{ or } \mathcal{A} \preccurlyeq_{\widehat{S}} \mathcal{U}_m.$ (8)

The preorder $\preccurlyeq_{\check{H}_v}$ on \check{H} is defined by

$$u \preccurlyeq_{\check{S}_v} u_1 \lor \dots \lor u_m \quad \text{iff} \quad \frac{x u_1 \land b \preccurlyeq_{\widehat{S}} n \cdots x u_m \land b \preccurlyeq_{\widehat{S}} n}{x u \land b \preccurlyeq_{\widehat{S}} n}.$$

$$(9)$$

Proposition 3.10. Let $(H, \preccurlyeq_{\widehat{S}}, \land_H)$ be a *G*-semilattice. The *G*-ordered sets $(\check{H}, \preccurlyeq_{\check{S}_s})$ and $(\check{H}, \preccurlyeq_{\check{S}_v})$ endowed with the operation

$$x(a_1 \vee \cdots \vee a_m) = xa_1 \vee \cdots \vee xa_m \tag{10}$$

are ideal G-lattices for H: they will be called respectively \check{H}_s and \check{H}_v and are the coarsest and the finest ideal G-lattice for H: every preorder \preccurlyeq on \check{H} that extends $(H, \preccurlyeq_{\widehat{S}})$ and makes \check{H} an ideal G-lattice for B satisfies

$$\frac{a \preccurlyeq_{\check{S}_s} b}{a \preccurlyeq b} \quad \text{and} \quad \frac{a \preccurlyeq b}{a \preccurlyeq_{\check{S}_v} b}.$$

There may be finer preorders on B that give rise to the same ideal G-lattice. To make this precise, let us state the following definition.

Definition 3.11. Let \preccurlyeq_V be an ideal *G*-lattice preorder for *B*. A preorder \preccurlyeq_S on *B* is \preccurlyeq_V -admissible if \preccurlyeq_S is induced by a preorder \preccurlyeq that is admissible for \preccurlyeq_V : rules (7) hold and

$$\frac{a \preccurlyeq b}{\overline{a \preccurlyeq s} \ b}.$$

Remark 3.12. One should state and prove here a counterpart to proposition 2.11.

Definition 3.13. Let \preccurlyeq_V be an ideal *G*-lattice preorder for *B* and consider a \preccurlyeq_V -admissible preorder \preccurlyeq_S . The *minimal ideal lattice extension* \preccurlyeq'_S is the conjunction of all extensions of \preccurlyeq_S to \tilde{B} that are admissible for \preccurlyeq_V .

Lemma 3.14. Let \preccurlyeq_V be an ideal *G*-lattice preorder for *B* and consider \preccurlyeq_V -admissible preorders \preccurlyeq_S and \preccurlyeq_T such that \preccurlyeq_T is finer than \preccurlyeq_S . Then \preccurlyeq'_T is finer than \preccurlyeq'_S .

Lemma 3.15. Let \preccurlyeq_V be an ideal *G*-lattice preorder for *B*. If \leqslant_S is a \preccurlyeq_V -admissible total preorder on *B*, then its unique extension to \widetilde{B} is the admissible total preorder $\leqslant_{\widetilde{S}}$ on \widetilde{B} given by

$$a_1 \wedge \dots \wedge a_m \leqslant_{\widetilde{S}} b_1 \vee \dots \vee b_n \text{ iff } \min(a_1, \dots, a_m) \leqslant_S \max(b_1, \dots, b_n).$$

$$(11)$$

Proof. [Argument in Lor50, Satz 20, p. 513.] By lemma 2.16, the unique extension of \leq_S to \hat{B} is the total preorder $\leq_{\hat{S}}$ defined in (3). Let us check that the preorders $\leq_{\check{S}_s}$ and $\leq_{\check{S}_v}$ defined in definition 3.9 coincide with the definition of $\leq_{\check{S}}$ in (11). This follows at once for $\leq_{\check{S}_s}$. For $\leq_{\check{S}_v}$, note that $xa_1 \wedge b \leq_{\hat{S}} n$, $\ldots, xa_m \wedge b \leq_{\hat{S}} n$ hold simultaneously if and only if $x \max(a_1, \ldots, a_m) \wedge b \leq_{\hat{S}} n$.

Definition 3.16. A *G*-ordered set *B* is \preccurlyeq_V -principal, where \preccurlyeq_V is an ideal *G*-lattice preorder, if its preorder \preccurlyeq_B is a conjunction of \preccurlyeq_V -admissible total preorders.

Definition 3.17. Let \preccurlyeq_V be an ideal *G*-lattice preorder for *B*. We define the preorder \preccurlyeq_{V_a} on *B* by

 $a_1 \wedge \cdots \wedge a_m \preccurlyeq_{V_a} b_1 \vee \cdots \vee b_n$ iff for all \preccurlyeq_V -admissible total preorders \leqslant

on B holds $\min(a_1, \ldots, a_m) \leq \max(b_1, \ldots, b_n)$. (12)

and the preorder \preccurlyeq_{S,V_a} for a \preccurlyeq_H -admissible preorder \preccurlyeq_S by

 $a_1 \wedge \dots \wedge a_m \preccurlyeq_{S,V_a} b_1 \vee \dots \vee b_n$ iff for all \preccurlyeq_V -admissible total preorders \leqslant on *B* refining \preccurlyeq_S holds $\min(a_1, \dots, a_m) \leqslant \max(b_1, \dots, b_n)$. (13)

Proposition 3.18. Let \preccurlyeq_V be an ideal *G*-lattice preorder for *B*. The preorder \preccurlyeq_{V_a} on \tilde{B} is admissible for \preccurlyeq_V .

Proof. The preorder \preccurlyeq_{V_a} is a conjunction of admissible preorders by lemma 3.15.

Corollary 3.19. Let \preccurlyeq_V be an ideal *G*-lattice preorder for *B*. *T.f.a.e.*

- 1. B is \preccurlyeq_V -principal.
- 2. (B, \preccurlyeq_{V_a}) is an ideal G-lattice for B.
- 3. The preorder \preccurlyeq_{V_a} induces \preccurlyeq_B on B.
- 4. The preorder \preccurlyeq_B is finer than the preorder induced by \preccurlyeq_{V_a} on B.

Remark 3.20. Compare with [Lor50, Satz 21, p. 514] which at first view seems to state the opposite.

Definition 3.21. Given a pair $\alpha = (a_1, a_2)$ out of B, we define the \preccurlyeq_V -extension $\preccurlyeq_{S[\alpha]_V}$ as the conjunction of all \preccurlyeq_V -admissible preorders \preccurlyeq on B that refine \preccurlyeq_S and such that $a_1 \preccurlyeq a_2$:

$$\frac{a \preccurlyeq_S b}{a \preccurlyeq b}$$
 and $a_1 \preccurlyeq a_2$.

Lemma 3.22 ([Lor52, Satz 2, p. 273]). The inequality $a_1 \wedge \cdots \wedge a_m \preccurlyeq_{S,V_a} b_1 \vee \cdots \vee b_n$ holds for elements $a_1, \ldots, a_m, b_1, \ldots, b_n$ of B and $a \preccurlyeq_V$ -admissible preorder \preccurlyeq_S on B if and only if there are pairs $\alpha_1, \ldots, \alpha_e$ out of B such that for all choices of signs $\varepsilon_1, \ldots, \varepsilon_e \in \{+1, -1\}$ we have $a_1 \wedge \cdots \wedge a_m \preccurlyeq'_{S[\alpha_1^{\varepsilon_1}, \ldots, \alpha_e^{\varepsilon_e}]_V} b_1 \vee \cdots \vee b_n$.

Proof. The same proof as for lemma 2.25.

Remark 3.23. Strangely, Lorenzen states this lemma only under the hypothesis that B is \prec_V -principal.

Theorem 3.24. A G-ordered set B is \preccurlyeq_V -principal, where \preccurlyeq_V is an ideal G-lattice preorder for B, if and only if

$$\frac{a \preccurlyeq_{B[\alpha_1^{\varepsilon_1}, \dots, \alpha_e^{\varepsilon_e}]_V} b \quad \text{for all } \varepsilon_1, \dots, \varepsilon_e \in \{+1, -1\}}{a \preccurlyeq_B b}$$

Proof. The same proof as for theorem 2.27.

4 "Teilbarkeitstheorie in Bereichen" (1952), § 4.

Definition 4.1 ([Lor52, Definition 9, p. 273]). A *G*-lattice $(V, \preccurlyeq_V, \land_V, \lor_V)$ is *regular* if it is distributive and if for all a, b in V and x, y in G holds

$$xa \wedge_V yb \preccurlyeq_V xb \lor_V ya. \tag{14}$$

Proposition 4.2. If \preccurlyeq_V is a total preorder \leqslant , then V is regular.

Proof. Let a, b in V. If $a \leq b$, then $xa \leq xb$; if $b \leq a$, then $yb \leq ya$. In both cases, $\min(xa, yb) \leq \max(xb, ya)$.

Proposition 4.3. If $(V, \preccurlyeq_V, \land_V, \lor_V)$ is regular and \preccurlyeq is admissible for \preccurlyeq_V , then $(V, \preccurlyeq, \land_V, \lor_V)$ is also regular.

Proof. This follows from the fact that the meets and joins for \preccurlyeq_V are equal w.r.t. \preccurlyeq to the meets and joins for \preccurlyeq , and that \preccurlyeq is finer than \preccurlyeq_V .

Corollary 4.4. If the preorder \preccurlyeq_V of a *G*-lattice *V* is a conjunction of admissible total preorders of (V, \preccurlyeq_V) , then *V* is regular.

Theorem 4.5 ([Lor52, Satz 3, p. 274]). The preorder \preccurlyeq_V of a *G*-lattice *V* is a conjunction of admissible total preorders of (V, \preccurlyeq_V) if and only if *V* is regular.

Proof. Only sufficiency remains to be proved. For every pair $\gamma = (c_1, c_2)$ such that $c_1 \not\leq_V c_2$, we need to find an admissible total preorder \leq such that $c_1 \not\leq c_2$. Consider a maximal admissible preorder \leq_S on (V, \leq_V) with $c_1 \not\leq_S c_2$ and let us consider the orders \leq_{S_β} defined for every pair $\beta = (b_1, b_2)$ by

$$a \preccurlyeq_{S_{\beta}} b \quad \text{if} \quad xa \land yb_1 \preccurlyeq_S xb \lor yb_2 \text{ for all } x \text{ and } y.$$
 (15)

Then $\preccurlyeq_{S_{\beta}}$ is admissible. In fact,

- $\preccurlyeq_{S_{\beta}}$ refines \preccurlyeq_{S} : if $a \preccurlyeq_{S} b$, then $xa \preccurlyeq_{S} xb$ and $xa \land yb_{1} \preccurlyeq_{S} xb \lor yb_{2}$;
- $\preccurlyeq_{S_{\beta}}$ is transitive: if $xa \wedge yb_1 \preccurlyeq_S xb \vee yb_2$, then $xa \wedge yb_1 \preccurlyeq_S (xb \vee yb_2) \wedge yb_1 \equiv_S (xb \wedge yb_1) \vee (yb_1 \wedge yb_2)$; if furthermore $xb \wedge yb_1 \preccurlyeq_S xc \vee yb_2$, then $xa \wedge yb_1 \preccurlyeq_S (xc \vee yb_2) \vee (yb_1 \wedge yb_2) \equiv_S xc \vee yb_2$;

- every z preserves $\preccurlyeq_{S_{\beta}}$: if $a \preccurlyeq_{S_{\beta}} b$, then $(xz)a \land yb_1 \preccurlyeq_S (xz)b \lor yb_2$ for all x and y, that is, $za \preccurlyeq_{S_{\beta}} zb$;
- $\preccurlyeq_{S_{\beta}}$ preserves meets: if $xc \wedge yb_1 \preccurlyeq_S xa \vee yb_2$ and $xc \wedge yb_1 \preccurlyeq_S xb \vee yb_2$, then $xc \wedge yb_1 \preccurlyeq_S (xa \vee yb_2) \wedge (xb \vee yb_2) \equiv_S (xa \wedge xb) \vee (xa \wedge yb_2) \vee (yb_2 \wedge xb) \vee yb_2 \equiv_S x(a \wedge b) \vee yb_2$;
- dually, $\preccurlyeq_{S_{\beta}}$ also preserves joins.

Furthermore, $\preccurlyeq_{S_{\gamma}}$ is \preccurlyeq_{S} by maximality, for if we had $c_1 \preccurlyeq_{S_{\gamma}} c_2$, then $c_1 \preccurlyeq_{S} c_2$ would hold by letting x and y be the identical operator in the definition of S_{γ} .

Let us prove that \preccurlyeq_S is a total preorder and suppose that $b_2 \not\preccurlyeq_S b_1$: note that $b_2 \preccurlyeq_{S_\beta} b_1$ by regularity, so that \preccurlyeq_{S_β} is strictly finer than \preccurlyeq_S ; by maximality holds $c_1 \preccurlyeq_{S_\beta} c_2$. But then, by the symmetry of definition (15), $b_1 \preccurlyeq_{S_\gamma} b_2$.

Remark 4.6. This proof is still not too involved because the lattice structure of V and the semigroup structure of G do not interfere too much.

5 "Die Erweiterung halbgeordneter Gruppen zu Verbandsgruppen" (1953), § 1.

Lemma 3.22 shows that if one starts by letting \preccurlyeq_{V_a} be the preorder on \hat{B} given by

$$a_1 \wedge \dots \wedge a_m \preccurlyeq_{V_a} b_1 \vee \dots \vee b_n \text{ iff } \exists_{\alpha_1,\dots,\alpha_e} a_1 \wedge \dots \wedge a_m \preccurlyeq'_{B[\alpha_1^{\pm 1},\dots,\alpha_e^{\pm 1}]_V} b_1 \vee \dots \vee b_n \tag{16}$$

one defines a regular distributive G-lattice. This distributivity may be proved directly by showing that (16) defines an entailment relation [argument in Lor53, pp. 16–17]. Regularity may also be proved directly [argument in Lor53, pp. 17–18].

6 "Die Erweiterung halbgeordneter Gruppen zu Verbandsgruppen" (1953), § 2.

In the case of a preordered group G, its ideal lattice $(\tilde{G}, \preccurlyeq_V)$ is already determined by its ideal semilattice $(\hat{G}, \preccurlyeq_H)$: as $(b_1 \lor \cdots \lor b_n)(b_1^{-1} \land \cdots \land b_n^{-1}) = 1$, one has

$$a_1 \wedge \dots \wedge a_m \preccurlyeq_V b_1 \vee \dots \vee b_n$$
 iff $a_1 b_1^{-1} \wedge \dots \wedge a_m b_n^{-1} \preccurlyeq_H 1$.

One can therefore resort to lemma 2.25 and try to start by letting \preccurlyeq_{H_a} be the preorder given on G by

$$a_1 \wedge \dots \wedge a_m \preccurlyeq_{H_a} b_1 \vee \dots \vee b_n \text{ iff } \exists_{\gamma_1, \dots, \gamma_e} a_1 b_1^{-1} \wedge \dots \wedge a_m b_n^{-1} \preccurlyeq'_{B[\gamma_1^{\pm 1}, \dots, \gamma_e^{\pm 1}]_H} 1 \tag{17}$$

and prove that this defines a distributive lattice domain $(\tilde{G}, \preccurlyeq_{H_a})$ by analogy with section 5. This is straightforward. Furthermore holds

Theorem 6.1 ([Lor53, Satz 1, p. 18]). $(\tilde{G}, \preccurlyeq_{H_a})$ is a regular lattice group.

The proof of theorem 6.1 takes 5 pages: [Lor53, pp. 18-22].

Proposition 6.2. Let $(G, \preccurlyeq, \land, \lor)$ be a lattice group. T.f.a.e.

- 1. G is regular.
- 2. $xa \wedge by \preccurlyeq xb \lor ay$.

3.
$$\frac{a \wedge xax^{-1} \equiv 1}{a \equiv 1}$$
4.
$$\frac{a \wedge b \preccurlyeq 1}{a \wedge xbx^{-1} \preccurlyeq 1}$$

5. $a^{-1} \wedge xax^{-1} \preccurlyeq 1$.

It turns out [see Lor53, p. 23] that in any lattice group hold the following properties (without supposing regularity).

- $ab^{-1} \wedge ba^{-1} \preccurlyeq 1$.
- $c_1c_2^{-1} \wedge \cdots \wedge c_{n-1}c_n^{-1} \wedge c_nc_1^{-1} \preccurlyeq 1.$
- $a_1b_{\nu_1} \wedge \cdots \wedge a_mb_{\nu_m} \preccurlyeq a_{\mu_1}b_1 \vee \cdots \vee a_{\mu_n}b_n$ for any choice of ν_1, \ldots, ν_m between 1 and n and any choice of μ_1, \ldots, μ_n between 1 and m.

7 "Die Erweiterung halbgeordneter Gruppen zu Verbandsgruppen" (1953), § 3.

In section 6, a regular lattice group $(\tilde{G}, \preccurlyeq_{H_a})$ has been defined for every ideal semilattice preorder \preccurlyeq_H for a preordered group (G, \preccurlyeq_G) . This lattice group is an ideal lattice domain for G if the preorder \preccurlyeq_{H_a} is an extension of the preorder of G: this is captured by

Definition 7.1. A group G is \preccurlyeq_H -closed if

$$\frac{a \preccurlyeq_{G[\alpha_1^{\pm 1}, \dots, \alpha_l^{\pm 1}]_H} 1}{a \preccurlyeq_G 1}.$$

In the case of a field in which a relation of divisibility is defined by an integral domain I and whose (commutative) multiplicative group G is therefore associated to the ideal semilattice (H_d, \preccurlyeq_d) of the Dedekind ideals of I, the \preccurlyeq_d -admissible preorders of G are in bijection with the overrings for I. The preorder $\preccurlyeq_{G[\gamma]_d}$ corresponds for the pair $\gamma = (a, b)$ to the integral domain $I[a^{-1}b]$.

An element a is \preccurlyeq_d -dependent from I if and only if there are c_1, \ldots, c_m such that $a \in I[c_1^{\pm 1}, \ldots, c_l^{\pm 1}]$ for every choice of signs; the condition of \preccurlyeq_d -closedness (the so-called "integral closedness") spells

$$\frac{a \in I[c_1^{\pm 1}, \dots, c_l^{\pm 1}]}{a \in I}$$

The definition of the regular lattice preorder \preccurlyeq_{d_a} spells

$$a_{1} \wedge \dots \wedge a_{m} \preccurlyeq_{d_{a}} b_{1} \vee \dots \vee b_{n} \text{ iff } \exists_{c_{1},\dots,c_{e}} 1 \in (a_{1}b_{1}^{-1},\dots,a_{m}b_{n}^{-1})I[c_{1}^{\pm 1},\dots,c_{e}^{\pm 1}]$$
$$\text{iff } \exists_{k} 1 \in \sum_{\varkappa=1}^{k} (a_{1}b_{1}^{-1},\dots,a_{m}b_{n}^{-1})^{\varkappa}.$$
(18)

Remark 7.2. The rôle of the hypothesis of \preccurlyeq_d -closedness here is not clear to me.

The last equivalence results from

Theorem 7.3 ([Lor53, Satz 2, p. 24]).

$$\exists_{c_1,\dots,c_e} \ 1 \in (a_1,\dots,a_m) I[c_1^{\pm 1},\dots,c_e^{\pm 1}] \quad iff \quad \exists_k \ 1 \in \sum_{\varkappa=1}^k (a_1,\dots,a_m)^{\varkappa}.$$

This shows that in the case n = 1, the definition of \preccurlyeq_{d_a} turns into the usual definition of integral dependence:

$$a_1 \wedge \cdots \wedge a_m \preccurlyeq_{d_a} b$$
 iff $b^k + c_1 b^{k-1} + \cdots + c_k = 0$ for some k and $c_{\varkappa} \in (a_1, \ldots, a_m)^{\varkappa}$.

References

- [Jaf60] Paul Jaffard. Les systèmes d'idéaux. Travaux et recherches mathématiques IV. Paris: Dunod, 1960 (cit. on p. 2).
- [Kru35] Wolfgang Krull. Idealtheorie. Ergebnisse der Mathematik und ihrer Grenzgebiete IV, 3. Berlin: J. Springer, 1935 (cit. on p. 3).
- [Lor39] P. Lorenzen. "Abstrakte Begründung der multiplikativen Idealtheorie". In: Math. Z. 45 (1939), pp. 533-553. URL: http://eudml.org/doc/168865 (cit. on p. 3).
- [Lor50] Paul Lorenzen. "Über halbgeordnete Gruppen". In: Math. Z. 52 (1950), pp. 483–526. URL: http://eudml.org/doc/169131 (cit. on pp. 1–4, 7).
- [Lor51] Paul Lorenzen. "Algebraische und logistische Untersuchungen über freie Verbände". In: J. Symb. Log. 16 (1951), pp. 81–106 (cit. on pp. 2, 5, 6).
- [Lor52] Paul Lorenzen. "Teilbarkeitstheorie in Bereichen". In: Math. Z. 55 (1952), pp. 269–275. URL: http://eudml.org/doc/169251 (cit. on pp. 1–6, 8).
- [Lor53] Paul Lorenzen. "Die Erweiterung halbgeordneter Gruppen zu Verbandsgruppen". In: Math. Z. 58 (1953), pp. 15–24. URL: http://eudml.org/doc/169331 (cit. on pp. 9, 10).
- [Prü32] Heinz Prüfer. "Untersuchungen über Teilbarkeitseigenschaften in Körpern". In: J. Reine Angew. Math. 168 (1932), pp. 1–36. URL: http://dx.doi.org/10.1515/crll.1932.168.1 (cit. on p. 2).