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Abstract

We solve an elementary extremal problem on trigonometric polynomials and obtain the exact
value of the Sidon constant for sets with three elements {n0, n1, n2}: it is

sec (π gcd(n1 − n0, n2 − n0)/2max |ni − nj |) .

1 Introduction

Let Λ = {λ0, λ1, λ2} be a set of three frequencies and %0, %1, %2 three positive intensities. We solve
the following extremal problem:

(†)
To find ϑ0, ϑ1, ϑ2 three phases such that, putting cj = %j e iϑj , the maximum maxt |c0e iλ0t +
c1e iλ1t + c2e iλ2t| is minimal.

This enables us to generalise a result of D. J. Newman. He solved the following extremal problem
for Λ = {0, 1, 2}:

(‡) To find f(t) = c0e iλ0t + c1e iλ1t + c2e iλ2t with ‖f‖∞ = maxt |f(t)| 6 1 such that ‖f̂‖1 =
|c0| + |c1| + |c2| is maximal.

Note that for such an f , ‖f̂‖1 is the Sidon constant of Λ. Newman’s argument is the following
(see [6, Chapter 3]): by the parallelogram law,

max
t

|f(t)|2 = max
t

|f(t)|2 ∨ |f(t + π)|2

> max
t

(
|f(t)|2 + |f(t + π)|2

)
/2

= max
t

(
|c0 + c1e it + c2e i2t|2 + |c0 − c1e it + c2e i2t|2

)
/2

= max
t

|c0 + c2e i2t|2 + |c1|2 =
(
|c0| + |c2|

)2
+ |c1|2

>
(
|c0| + |c1| + |c2|

)2
/2

and equality holds exactly for multiples and translates of f(t) = 1 + 2ie it + e i2t.
Let us describe this paper briefly. We use a real-variable approach: Problem (†) reduces to

studying a function of form

Φ(t, ϑ) = |1 + re iϑe ikt + se ilt|2 for r, s > 0, k 6= l ∈ Z∗

and more precisely Φ∗(ϑ) = maxt Φ(t, ϑ). We obtain the variations of Φ∗: the point is that we find
“by hand” a local minimum of Φ∗ and that any two minima of Φ∗ are separated by a maximum of
Φ∗, which corresponds to an extremal point of Φ and therefore has a handy description. The solution
to Problem (‡) then turns out to derive easily from this.

The initial motivation was twofold. In the first place, we wanted to decide whether sets Λ = {λn}
such that λn+1/λn is bounded by some q may have a Sidon constant arbitrarily close to 1 and to find
evidence among sets with three elements. That there are such sets, arbitrarily large but finite, may
in fact be proven by the method of Riesz products in [2, Appendix V, §1.II]. In the second place, we
wished to show that the real and complex unconditionality constants are distinct for basic sequences
of characters e int; we prove however that they coincide in the space C (T) for sequences with three
terms.

Notation. T = { z ∈ C : |z| = 1 } and eλ(z) = zλ for z ∈ T and λ ∈ Z.
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2 Definitions

Definition 2.1. (1) Let Λ ⊆ Z. Λ is a Sidon set if there is a constant C such that for all trigonometric
polynomials f(t) =

∑
λ∈Λ cλe iλt with spectrum in Λ we have

‖f̂‖1 =
∑

λ∈Λ

|cλ| 6 C max
t

|f(t)| = ‖f‖∞.

The optimal C is called the Sidon constant of Λ.

(2) Let X be a Banach space. The sequence (xn) ⊆ X is a real (vs. complex) unconditional basic
sequence in X if there is a constant C such that

∥∥∥
∑

ϑncnxn

∥∥∥
X

6 C
∥∥∥

∑
cnxn

∥∥∥
X

for every real (vs. complex) choice of signs ϑn ∈ {−1, 1} (vs. ϑn ∈ T) and every finitely supported
family of coefficients (cn). The optimal C is the real (vs. complex) unconditionality constant of (xn)
in X .

Let us state the two following well known facts.

Proposition 2.2. (1) The Sidon constant of Λ is the complex unconditionality constant of the se-
quence of functions (eλ)λ∈Λ in the space C (T).

(2) The complex unconditionality constant is at most π/2 times the real unconditionality constant.

Proof. (1) holds because
∥∥∑

ϑλcλeλ

∥∥
∞

=
∑ |cλ| for ϑλ = cλ/|cλ|.

(2) Because the complex unconditionality constant of the sequence (εn) of Rademacher functions
in C ({−1, 1}∞) is π/2 (see [5]),

sup
ϑn∈T

∥∥∥
∑

ϑncnxn

∥∥∥
X

= sup
x∗∈BX∗

sup
ϑn∈T

sup
εn=±1

∣∣∣
∑

ϑncn〈x∗, xn〉εn

∣∣∣

6 π/2 sup
x∗∈BX∗

sup
εn=±1

∣∣∣
∑

cn〈x∗, xn〉εn

∣∣∣

= π/2 sup
εn=±1

∥∥∥
∑

εncnxn

∥∥∥
X

.

Furthermore the real unconditionality constant of (εn) in C ({−1, 1}∞) is 1: therefore the factor π/2
is optimal.

Let us straighten out the expression of the Sidon constant. For

f(t) = c0e iλ0t + c1e iλ1t + c2e iλ2t, cj = %j e iϑj ,

the supremum norm ‖f‖∞ of f is equal to

‖%0 + %1e iϑeλ1−λ0
+ %2eλ2−λ0

‖∞, ϑ =
λ1 − λ2

λ2 − λ0
ϑ0 + ϑ1 +

λ0 − λ1

λ2 − λ0
ϑ2 (1)

and therefore the Sidon constant C of Λ = {λ0, λ1, λ2} may be written

C = max
r,s>0,ϑ

(1 + r + s)/‖1 + re iϑek + sel‖∞ with

{
k = λ1 − λ0

l = λ2 − λ0.
(2)

By change of variables, we may suppose w.l.o.g. that k and l are coprime.
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3 A solution to Extremal problem (†)

Let us first establish

Lemma 3.1. Let λ1, . . . , λk ∈ Z∗ and %1, . . . , %k > 0. Let

f(t, ϑ) = 1 + %1e i(λ1t+ϑ1) + · · · + %k−1e i(λk−1t+ϑk−1) + %ke iλkt

and Φ(t, ϑ) = |f(t, ϑ)|2. The critical points (t, ϑ) such that ∇Φ(t, ϑ) = 0 satisfy either f(t, ϑ) = 0 or
λ1t + ϑ1 ≡ · · · ≡ λk−1t + ϑk−1 ≡ λkt ≡ 0 mod π.

Proof. As Φ = (<f)2 + (=f)2, the critical points (t, ϑ) satisfy

{
< ∂f

∂t (t, ϑ) <f(t, ϑ) + = ∂f
∂t (t, ϑ) =f(t, ϑ) = 0

− sin(λit + ϑi) <f(t, ϑ) + cos(λit + ϑi) =f(t, ϑ) = 0 (1 6 i 6 k − 1),

which simplifies to

− sin(λit + ϑi) <f(t, ϑ) + cos(λit + ϑi) =f(t, ϑ) = 0 (1 6 i 6 k, ϑk = 0).

Suppose that f(t, ϑ) 6= 0: then the system above implies that

− sin(λit + ϑi) cos(λjt + ϑj) + cos(λit + ϑi) sin(λjt + ϑj) = 0 (1 6 i, j 6 k, ϑk = 0)

and it simplifies therefore to

sin(λit + ϑi) = 0 (1 6 i 6 k, ϑk = 0).

The following result is the core of the paper.

Lemma 3.2. Let r, s > 0, k, l ∈ Z∗ distinct and coprime. Let

Φ(t, ϑ) = |1 + re iϑe ikt + se ilt|2

= 1 + r2 + s2 + 2r cos(kt + ϑ) + 2s cos lt + 2rs cos((l − k)t − ϑ).

Let Φ∗(ϑ) = maxt Φ(t, ϑ). Then Φ∗ is an even function with period 2π/|l| that decreases on [0, π/|l|].
Therefore minϑ Φ∗(ϑ) = Φ∗(π/l).

Proof. Φ∗ is continuous (see [4, Chapter 5.4]) and even, as Φ(t, −ϑ) = Φ(−t, ϑ). Φ∗ is (2π/|l|)-
periodical: let j ∈ Z be such that jk ≡ 1 mod. l. Then

Φ(t + 2jπ/l, ϑ) = |1 + re i(ϑ+2πjk/l) e ikt + se ilt|2 = Φ(t, ϑ + 2π/l).

Thus Φ∗ attains its minimum on [0, π/|l|]. Furthermore, we have

Φ(−t − 2jπ/l, π/l − ϑ) = Φ(t + 2jπ/l, −π/l + ϑ) = Φ(t, π/l + ϑ),

so that Φ∗ has an extremum at π/l. Now

Φ∗(π/l + ϑ) = Φ∗(π/l) + |ϑ| max
Φ(t,π/l)=Φ∗(π/l)

∣∣∣∂Φ

∂ϑ
(t, π/l)

∣∣∣ + o(ϑ).

Choose a t such that Φ(t, π/l) = Φ∗(π/l). If ∂Φ/∂ϑ(t, π/l) 6= 0, then this shows that Φ∗ has a
local minimum and a cusp at π/l. Let us now suppose that ∂Φ/∂ϑ(t, π/l) = 0. If Φ∗ had a local
maximum at π/l, then (t, π/l) would be a critical point of Φ, so that by Lemma 3.1 cos(kt+π/l) = δ,
cos lt = ε, cos((l − k)t − π/l) = δε for some δ, ε ∈ {−1, 1}. One necessarily would have (δ, ε) 6= (1, 1).
Furthermore,

∂2Φ

∂ϑ2
(t, π/l) = −2rδ(1 + sε) 6 0

∣∣∣∣
∂2Φ/∂t2 ∂2Φ/∂t∂ϑ

∂2Φ/∂ϑ∂t ∂2Φ/∂ϑ2

∣∣∣∣ (t, π/l) = 4rsl2(δε + rε + sδ) > 0,
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which would imply ε = −1, r = 0, s = 1. Therefore Φ∗ has a local minimum at π/l. Let us
show that then Φ∗ must decrease on [0, π/|l|]. Otherwise there are 0 6 ϑ0 < ϑ1 6 π/|l| such that
Φ∗(ϑ1) > Φ∗(ϑ0). As π/|l| is a local minimum, there is a ϑ0 < ϑ∗ < π/|l| such that

Φ∗(ϑ∗) = max
ϑ06ϑ6π/|l|

Φ∗(ϑ) = max
06t<2π

ϑ06ϑ6π/|l|

Φ(t, ϑ),

i.e., there further is some t∗ such that Φ has a local maximum at (t∗, ϑ∗). But then kt∗ +ϑ∗ ≡ lt∗ ≡ 0
mod π and ϑ∗ ≡ 0 mod π/l and this is false.

By Computation (1) and Lemma 3.2, we obtain

Theorem 3.3. Let λ0, λ1, λ2 ∈ R and %0, %1, %2 > 0. The solution to Extremal problem (†) is the
following.

• If the smallest additive group containing λ1 − λ0 and λ2 − λ0 is dense in R, then the maximum
is independent of the phases ϑ0, ϑ1, ϑ2 and makes %0 + %1 + %2.

• Otherwise let d = gcd(λ1 − λ0, λ2 − λ0) be a generator of this group. Then the sought phases
ϑ0, ϑ1, ϑ2 are given by

ϑ0(λ2 − λ1) + ϑ1(λ0 − λ2) + ϑ2(λ1 − λ0) ≡ dπ mod 2dπ.

In particular, these phases may be chosen among 0 and π.

4 A solution to Extremal problem (‡)

There are two cases where one can make explicit computations by Lemma 3.2.

Example 4.1. The real and complex unconditionality constant of {0, 1, 2} in C (T) is
√

2. Indeed, a
case study shows that

‖1 + ire1 + se2‖∞ =

{
r + |s − 1| if r|s − 1| > 4s

(1 + s)(1 + r2/4s)1/2 if r|s − 1| 6 4s

and this permits to compute the maximum (2), which is obtained for r = 2, s = 1. This yields
another proof to Newman’s result presented in the Introduction.

Example 4.2. The real and complex unconditionality constant of {0, 1, 3} in C (T) is 2/
√

3. Indeed,
a case study shows that ‖1 + re iπ/3e1 + se3‖∞ makes

{
1 + r − s if s 6 r/(4r + 9)
(

2
27 s(r2 + 9 + 3r/s)3/2 − 2

27 r3s + 2
3 r2 + rs + s2 + 1

)1/2
if s > r/(4r + 9)

and this permits to compute the maximum (2), which is obtained exactly at r = 3/2, s = 1/2.

These examples are particular cases of the following theorem.

Theorem 4.3. Let λ0, λ1, λ2 ∈ Z be distinct. Then the Sidon constant of Λ = {λ0, λ1, λ2} is
sec(π/2n), where n = max |λi − λj |/ gcd(λ1 − λ0, λ2 − λ0).

Proof. We may suppose λ0 < λ1 < λ2. Let k = (λ1 − λ0)/ gcd(λ1 − λ0, λ2 − λ0) and l = (λ2 − λ0)/
gcd(λ1 − λ0, λ2 − λ0). By Lemma 3.2, the Arithmetic-Geometric Mean Inequality bounds the Sidon
constant C of {0, k, l} in the following way:

C = max
r,s>0

1 + r + s

‖1 + re iπ/l ek + sel‖∞
6 max

r,s>0

1 + r + s

|1 + re iπ/l + s|

= max
r,s>0

(
1 − sin2 π

2l

4r(1 + s)

(1 + r + s)2

)−1/2

6
(
1 − sin2(π/2l)

)−1/2
= sec(π/2l).
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This inequality is sharp: we have equality for s = k/(l − k) and r = 1 + s. In fact the derivative of
|1 + re iπ/l e ikt + se ilt|2 is then

8kl

k − l
cos

kt + π/l

2
sin

lt

2
cos

(l − k)t − π/l

2
,

so that its critical points are

2j + 1

k
π − π

kl
,

2j

l
π,

2j + 1

l − k
π +

π

l(l − k)
: j ∈ Z,

where it makes

4s2 sin2 2j + 1 + l

2k
π, 4r2 cos2 2j + 1

2l
π, 4 cos2 2j + 1 + k

2(l − k)
π : j ∈ Z.

Therefore the maximum of |1 + re iπ/le ikt + se ilt| is 2r cos(π/2l).

This proof and (1) yield also the more precise

Proposition 4.4. Let Λ = {λ0, λ1, λ2} ⊆ Z. The solution to Extremal problem (‡) is a multiple of

f(t) = ε0 |λ1 − λ2| e iλ0t + ε1 |λ0 − λ2| e iλ1t + ε2 |λ0 − λ1| e iλ2t

with ε0, ε1, ε2 ∈ {−1, 1} real signs such that

• ε0ε1 = −1 if 2j | λ1 − λ0 and 2j - λ2 − λ0 for some j;

• ε0ε2 = −1 if 2j - λ1 − λ0 and 2j | λ2 − λ0 for some j;

• ε1ε2 = −1 otherwise.

The Sidon constant of Λ is attained for this f . Therefore the complex and real unconditionality
constants of {eλ}λ∈Λ in C (T) coincide for sets Λ with three elements.

5 Some consequences

Let us underline the following consequences of our computation.

Corollary 5.1. (1) The Sidon constant of sets with three elements is at most
√

2.

(2) The Sidon constant of {0, n, 2n} is
√

2, while the Sidon constant of {0, n + 1, 2n} is at most
sec(π/2n) = 1 + π2/8n2 + o(n−2) and thus arbitrarily close to 1.

(3) The Sidon constant of {λ0 < λ1 < λ2} does not depend on λ1 but on the g.c.d. of λ1 − λ0 and
λ2 − λ0.

Theorem 4.3 also shows anew that no set of integers with more than two elements has Sidon
constant 1 (see [6, p. 21] or [1]). Recall now that Λ = {λn} ⊆ Z is a Hadamard set if there is
a q > 1 such that |λn+1/λn| > q for all n. By [3, Cor. 9.4], the Sidon constant of Λ is at most
1 + π2/(2q2 − 2 − π2) if q >

√
π2/2 + 1 ≈ 2.44. On the other hand Theorem 4.3 shows

Corollary 5.2. (1) If there is an integer q > 2 such that Λ ⊇ {λ, λ + µ, λ + qµ} for some integers
λ and µ, then the Sidon constant of Λ is at least

sec(π/2q) > 1 + π2/(8q2).

(2) In particular, we have the following bounds for the Sidon constant C of the set Λ = {qk},
q ∈ Z \ {0, ±1, ±2}:

1 +
π2

8 max(−q, q + 1)2
< C 6 1 +

π2

2q2 − 2 − π2
.
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6 Three questions

(a) Is there a set Λ for which the real and complex unconditionality constants of {eλ}λ∈Λ in C (T)
differ? The same question is open in spaces Lp(T), 1 6 p < ∞, and even for the case of three
element sets if p is not a small even integer, and especially for the set {0, 1, 2, 3} in any space
but L2(T).

(b) Let q > 1. Are there infinite sets Λ = {λn} such that |λn+1/λn| 6 q with Sidon constant
arbitrarily close to 1? What about the sequence of integer parts of the powers of a transcendental
number σ > 1 (see [3, Cor. 2.10, Prop. 3.2])?

(c) The only set with more than three elements with known Sidon constant is {0, 1, 2, 3, 4}, for
which it makes 2 (see [6, Chapter 3]). Can one compute the Sidon constant of sets with four
elements? I conjecture that the Sidon constant of {0, 1, 2, 3} is 5/3.
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