
The free Lorenzen algebra generated by a preordered set

1 The free Lorenzen algebra in one big step
Let M be a semilattice. Let H0 be the set M . Let Ni be the set of terms ā out of elements a of Hi.
Let Hi+1 be the set of finite unordered concatenations b1� · · ·� bn out of elements b1, . . . , bn of Hi ∪ Ni;
if n = 0, the concatenation [ ] is “empty”. We define 0 as the term [ ]. Let H be the union of the sets Hi

(i = 0, 1, . . . ). Thus the elements of H are defined recursively as finite unordered lists (that is, multisets)
whose terms are elements of M or negations of elements of H.

We shall exploit below the natural associativity of concatenation, so that we do not need brackets
anywhere.

By definition, bσ(1)� · · ·� bσ(n) is just another writing for b1� · · ·� bn for any permutation σ: the sequential
arrangement plays no rôle.

The elements of H we call shortly “formulas,” the elements of M “prime formulas”. Then the following
“formula induction” holds: if a claim holds
1. for each prime formula,
2. for ā if for a,
3. for the unordered concatenation b1� · · ·� bn if for each of the formulas b1, . . . , bn,
then it holds for each formula.

In H we define constructively a relation ⩽ by:

⩽-axiom
a1� · · ·� an ⩽ b

if a1 ∧ · · · ∧ an ⩽ b holds in M ;(1)

a ⩽ b
� ⩽

a� c ⩽ b
for c not the empty formula;(2)

c ⩽ a for each term a of the formula b
⩽�

c ⩽ b
for b not a one-term formula;(3)

a� b ⩽ 0
⩽

a ⩽ b̄
for b not the empty formula;(4)

a ⩽ b
⩽

a� b̄ ⩽ c
.(5)

The first two rules import axioms of a semilattice into the left side of the relation. Rule ⩽-axiom provides
the axioms of the relation by importing relations from M into H. Rule � ⩽ is thinning on the left.

Rules ⩽� and ⩽ import the axiom of a Lorenzen algebra into the right side.
Rule ⩽ has a more opaque rôle: it imports negation into the left side. The computations below show

that one could replace it with the weaker rule a ⩽ a ➞ a� ā ⩽ c and establish rules (6), (7), (9) and (10),
but we could not establish the ⩽-cut rule (8) with this weaker rule. On the other hand, rule ⩽ easily
follows from this weaker rule and rule extended ⩽-cut in (15).

If a ⩽ b holds, then we call the formula pair a, b a “theorem.” The theorems produced by the ⩽-axiom

rule we call “prime theorems.” In the rules we call the formula pairs above the line the “premisses” and the
formula pair below the line the “conclusion.” The following “theorem induction” holds: if a claim holds
1. for each prime theorem,
2. for the conclusion of each rule whose premisses are theorems, if for these premisses,
then it holds for each theorem.
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We now show that H is a Lorenzen algebra with [ ] as greatest element and 0 as least element. For this
we have to prove the following five rules.

0 ⩽ c c ⩽ [ ]
.(6)

c ⩽ c
.(7)

a ⩽ c c ⩽ b
⩽-cut

a ⩽ b
.(8)

c ⩽ b
reverse ⩽�

c ⩽ a
for each term a of a formula b.(9)

a ⩽ b̄
reverse ⩽

a� b ⩽ 0
.(10)

(8) we prove—because of the difficulty—last.

(6). As ∧ ∅ ⩽ 1 in M , we have

⩽-axiom
[ ] ⩽ 1

⩽�
c ⩽ [ ]

[ ] ⩽ [ ]
⩽

[ ] ⩽ c .

Therefore [ ] is the greatest element of H, [ ] ≡ 1 and 0 is the least element of H.

We prove (7) by formula induction. For prime formulas c holds c ⩽ c because it holds in M . Further
holds

c ⩽ c
⩽

c� c̄ ⩽ 0
⩽

c̄ ⩽ c̄

and
c1 ⩽ c1

� ⩽
c1� · · ·� cn ⩽ c1 · · ·

cn ⩽ cn
� ⩽

cn� c1� · · ·� cn−1 ⩽ c1
⩽�

c1� · · ·� cn ⩽ c1� · · ·� cn .

For the proof of (9) we make it the claim of a theorem induction. If c ⩽ b is a prime theorem,
then b is a one-term list a, so that c ⩽ a holds. Let now be c ⩽ b conclusion of a rule, whose premisses
are theorems, and let the claim hold for the premisses. There are then only the following possibilities.

• c ⩽ b is conclusion with a premiss c′ ⩽ b of rule � ⩽: then holds for each term a of the formula b

c′ ⩽ b
claim

c′ ⩽ a
� ⩽

c ⩽ a .

• c ⩽ b is conclusion of rule ⩽� with the premiss that c ⩽ a for each term a of b: this premiss is what
we were looking for.

• One has c = c′� c′′, and c ⩽ b is conclusion of rule ⩽ with the premiss c′ ⩽ c′′: then holds for each
term a of the formula b

c′ ⩽ c′′

⩽
c ⩽ a .
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Thereby (9) is proved by theorem induction.

Next (10) results from a theorem induction: let (10) be its induction claim. For prime theorems there
is nothing to prove as there are no prime theorems of the form a ⩽ b̄. Let now be a ⩽ b̄ conclusion of
a rule, whose premisses are theorems, and let the claim hold for the premisses. There are then only the
following possibilities.

• One has a = a′� a′′ and a ⩽ b̄ is conclusion of rule � ⩽ with a premiss a′ ⩽ b̄: then holds

a′ ⩽ b̄
claim

a′� b ⩽ 0
� ⩽

a� b ⩽ 0 .

• a ⩽ b̄ is conclusion of rule ⩽ with the premiss that a� b ⩽ 0: the premiss is what we were looking
for.

• One has a = a′� a′′, and a ⩽ b̄ is conclusion of rule ⩽ with the premiss a′ ⩽ a′′: then holds

a′ ⩽ a′′

⩽
a ⩽ 0

� ⩽
a� b ⩽ 0 .

Of (8) may be proved immediately the principle of explosion by theorem induction on a:

(11)
a ⩽ 0

⩽-p.o.e.
a ⩽ b

Let (11) be the claim of a theorem induction. For prime theorems, there is nothing to prove as a ⩽ 0 is
not a prime theorem. Let now be a ⩽ 0 conclusion of a rule, whose premisses are theorems, and let the
claim hold for the premisses. There are then only the following possibilities.

• a ⩽ 0 is conclusion with a premiss a′ ⩽ 0 of rule � ⩽: then holds

a′ ⩽ 0
claim

a′ ⩽ b
� ⩽

a ⩽ b .

• One has a = a′� a′′, and a ⩽ 0 is conclusion of rule ⩽ with the premiss a′ ⩽ a′′: then holds

a′ ⩽ a′′

⩽
a ⩽ b .

Thereby (11) is proved by theorem induction.

For the general case we need three lemmas:

(12) a� d̄ ⩽ b
⩽

a� c ⩽ b
for each term c of the formula d.

Proof by theorem induction. Let (12) be the claim of a theorem induction. For prime theorems, there is
nothing to prove as a� d̄ ⩽ b is not a prime theorem. Let now be a� d̄ ⩽ b conclusion of a rule, whose
premisses are theorems, and let the claim hold for the premisses. Let c̄ be a term of the formula d. There
are then only the following possibilities.
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• a� d̄ ⩽ b is conclusion of rule � ⩽, where a = a′� a′′ and the premiss is a′� d̄ ⩽ b: then holds

a′� d̄ ⩽ b
claim

a′� c ⩽ b
� ⩽

a� c ⩽ b .

• a� d̄ ⩽ b is conclusion of rule � ⩽, where a = a′� a′′ and the premiss is a′ ⩽ b: then holds

a′ ⩽ b
� ⩽

a� c ⩽ b .

• a� d̄ ⩽ b is conclusion of rule ⩽ with the premiss a ⩽ d: then holds
a ⩽ d

reverse ⩽�
a ⩽ c̄

reverse ⩽
a� c ⩽ 0

⩽-p.o.e.
a� c ⩽ b .

(13)
a� c̄ ⩽ p

a ⩽ p
or

a� c̄ ⩽ p

a� c̄ ⩽ 0
for a prime formula p.

Proof by theorem induction. Let (13) be the claim of a theorem induction. For prime theorems, there
is nothing to prove as a� c̄ ⩽ p is not a prime theorem. Let now be a� c̄ ⩽ p conclusion of a rule,
whose premisses are theorems, and let the claim hold for the premisses. There are then only the following
possibilities.

• a� c̄ ⩽ p is conclusion of rule � ⩽, where a = a′� a′′ and the premiss is a′� c̄ ⩽ p: then holds

a′� c̄ ⩽ p
claim

a′ ⩽ p
� ⩽

a ⩽ p or

a′� c̄ ⩽ p
claim

a′� c̄ ⩽ 0
� ⩽

a� c̄ ⩽ 0 .

• a = a′� a′′, and a� c̄ ⩽ p is conclusion of rule � ⩽ with a premiss a′ ⩽ p: then holds

a′ ⩽ p
� ⩽

a ⩽ p .

• a� c̄ ⩽ p is conclusion of rule ⩽ with the premiss a ⩽ c: then holds
a ⩽ c

⩽
a� c̄ ⩽ 0 .

(14)
a� c� c ⩽ b

⩽-contraction
a� c ⩽ b

for c not the empty formula.

We use a formula induction on c. For prime formulas c, let (14) be the claim of a theorem induction. For
prime theorems a� c� c ⩽ b, a ∧ c ∧ c ⩽ b holds in M , so that a ∧ c ⩽ b holds in M and

⩽-axiom
a� c ⩽ b .

Let now be a� c� c ⩽ b conclusion of a rule, whose premisses are theorems, and let the claim hold for the
premisses. There are then only the following possibilities.

4



• a� c� c ⩽ b is conclusion of rule � ⩽, where a = a′� a′′ and the premiss is either a′� c� c ⩽ b, or
a′� c ⩽ b, or a′ ⩽ b: then holds

either

a′� c� c ⩽ b
claim

a′� c ⩽ b
� ⩽

a� c ⩽ b or
a′� c ⩽ b

� ⩽
a� c ⩽ b or

a′ ⩽ b
� ⩽

a� c ⩽ b .

• a� c� c ⩽ b is conclusion of rule ⩽� with the premiss that a� c� c ⩽ b′ for each term b′ of b. Then
holds

a� c� c ⩽ b′

claim
a� c ⩽ b′ for each term b′ of b

⩽�
a� c ⩽ b .

• b = b′ and a� c� c ⩽ b is conclusion of rule ⩽ with the premiss that a� c� c� b′ ⩽ 0. Then holds

a� c� c� b′ ⩽ 0
claim

a� c� b′ ⩽ 0
⩽

a� c ⩽ b .

• a = a′� a′′ and a� c� c ⩽ b is conclusion of rule ⩽ with the premiss that a′� c� c ⩽ a′′. Then holds

a′� c� c ⩽ a′′

claim
a′� c ⩽ a′′

⩽
a� c ⩽ b .

Suppose that (14) holds for each of the terms c1, . . . , cn instead of c. Then holds

a� c1� · · ·� cn� c1� · · ·� cn ⩽ b
⩽-contraction

a� c1� · · ·� cn� c2� · · ·� cn ⩽ b
···· ⩽-contractionn−1

a� c1� · · ·� cn ⩽ b

For formulas c̄ we first note that c is an unordered concatenation of prime formulas pµ of M and of
negations c1, . . . , cn of elements of H such that (14) holds for each of the cν instead of c as induction
hypothesis of our formula induction. We shall prove (14) for c̄ instead of c by theorem induction. All steps
are the same as in the proof of (14) for prime formulas c above, except that in the last possibility a new
case arises: a� c̄� c̄ ⩽ b is conclusion of rule ⩽ with the premiss that a� c̄ ⩽ c. Then holds

a� c̄ ⩽ c
reverse ⩽�

a� c̄ ⩽ pµ

for each pµ

and
a� c̄ ⩽ c

reverse ⩽�
a� c̄ ⩽ cν

for each cν .

Then holds by (13)
a� c̄ ⩽ pµ

a ⩽ pµ

or
a� c̄ ⩽ pµ

a� c̄ ⩽ 0
and

a� c̄ ⩽ cν
⩽

a� cν ⩽ cν
reverse ⩽

a� cν � cν ⩽ 0
formula induction claim

a� cν ⩽ 0
⩽

a ⩽ cν
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Thus
a ⩽ pµ for all pµ a ⩽ cν for all cν

⩽�
a ⩽ c

⩽
a� c̄ ⩽ b

or
a� c̄ ⩽ 0

⩽-p.o.e.
a� c̄ ⩽ b

.

With the help of (14) we can now instead of (8) even prove

(15)
a ⩽ c d� c ⩽ b

extended ⩽-cut
a� d ⩽ b .

by formula induction for each formula c.
For prime formulas c, let (15) be the claim of a theorem induction. Let now a ⩽ c and d� c ⩽ b be

prime theorems or conclusions of a rule, whose premisses are theorems, and let the claim hold for the
premisses.

• If they are both prime theorems, a ⩽ c and d ∧ c ⩽ b hold in M , so that

a ⩽ c

a ∧ d ⩽ c

a ∧ d ⩽ d ∧ c d ∧ c ⩽ b

a ∧ d ⩽ b and
⩽-axiom

a� d ⩽ b .

• Suppose that a ⩽ c is a prime theorem or conclusion of rule � ⩽, where a = a′� a′′ and the premiss
is a′ ⩽ c.

– Suppose that d� c ⩽ b is a prime theorem or conclusion of rule � ⩽, where d = d′� d′′ and the
premiss is d′� c ⩽ b: then holds

a′ ⩽ c d′� c ⩽ b
claim

a′� d′ ⩽ b
····

a� d ⩽ b .

– Suppose that d� c ⩽ b is conclusion of rule � ⩽, where d = d′� d′′ and the premiss is d′ ⩽ b.
Then holds

d′ ⩽ b
� ⩽

d� a ⩽ b .

– Suppose that d� c ⩽ b is conclusion of rule ⩽ � , where the premiss is that d� c ⩽ b′ for each
term b′ of b. Then holds

a′ ⩽ c d� c ⩽ b′ for each term b′ of b
claim

a′� d ⩽ b′ for each term b′ of b
⩽�

a′� d ⩽ b
····

a� d ⩽ b .

– Suppose that d� c ⩽ b is conclusion of rule ⩽ , where b = b′ and the premiss is that d� c� b′ ⩽ 0.
Then holds

a′ ⩽ c d� c� b′ ⩽ 0
claim

a′� d� b′ ⩽ 0
⩽

a′� d ⩽ b
····

a� d ⩽ b .
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– Suppose that d� c ⩽ b is conclusion of rule ⩽, where d = d′ � d′′ and the premiss is that
d′� c ⩽ d′′. Then holds

a′ ⩽ c d′� c ⩽ d′′

claim
a′� d′ ⩽ d′′

⩽
a′� d ⩽ b

····
a� d ⩽ b .

• Suppose that a ⩽ c is conclusion of rule ⩽, where a = a′� a′′ and the premiss is a′ ⩽ a′′. Then
holds

a′ ⩽ a′′

⩽
a ⩽ b

� ⩽
a� d ⩽ b .

Let us check that (15) holds for empty c:

a ⩽ [ ] d ⩽ b

d ⩽ b
� ⩽

d� a ⩽ b .

From
a ⩽ c1 d� c1 ⩽ b

a� d ⩽ b
· · ·

a ⩽ cn d� cn ⩽ b

a� d ⩽ b

follows

· · ·

a ⩽ c1� · · ·� cn
reverse ⩽�

a ⩽ c2

a ⩽ c1� · · ·� cn
reverse ⩽�

a ⩽ c1 d� c1� · · ·� cn ⩽ b

a� d� c2� · · ·� cn ⩽ b

a� a� d� c3� · · ·� cn ⩽ b
⩽-contraction

a� d� c3� · · ·� cn ⩽ b
····

a� d ⩽ b

Now let (15) hold for c. We prove the validity for c̄ by theorem induction for all theorems d� c̄ ⩽ b. For
prime theorems, there is nothing to prove as d� c̄ ⩽ b is not a prime theorem. Let now d� c̄ ⩽ b be
conclusion of a rule, whose premisses are theorems, and let the claim hold for the premisses. There are
then only the following possibilities.

• d� c̄ ⩽ b is conclusion of rule � ⩽, where d = d′� d′′ and the premiss is d′� c̄ ⩽ b: then holds

a ⩽ c̄ d′� c̄ ⩽ b
claim

a� d′ ⩽ b
� ⩽

a� d ⩽ b .

• d� c̄ ⩽ b is conclusion of rule � ⩽, where d = d′� d′′ and the premiss is d′ ⩽ b. Then holds

d′ ⩽ b
� ⩽

d� a ⩽ b .

• d� c̄ ⩽ b is conclusion of rule ⩽ � , where the premiss is that d� c̄ ⩽ b′ for each term b′ of b. Then
holds

a ⩽ c̄ d� c̄ ⩽ b′ for each term b′ of b
claim

a� d ⩽ b′ for each term b′ of b
⩽�

a� d ⩽ b .
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• d� c̄ ⩽ b is conclusion of rule ⩽ , where b = b′ and the premiss is that d� c̄� b′ ⩽ 0. Then holds

a ⩽ c̄ d� c̄� b′ ⩽ 0
claim

a� d� b′ ⩽ 0
⩽

a� d ⩽ b .

• d� c̄ ⩽ b is conclusion of rule ⩽, where d = d′� d′′ and the premiss is that d′� c̄ ⩽ d′′. Then holds

a ⩽ c̄ d′� c̄ ⩽ d′′

claim
a� d′ ⩽ d′′

⩽
a� d ⩽ b .

• d� c̄ ⩽ b is conclusion of rule ⩽, where the premiss is that d ⩽ c. Then holds

a ⩽ c̄
reverse ⩽

a� c ⩽ 0
⩽-p.o.e.

a� c ⩽ b d ⩽ c
formula induction claim

d� a ⩽ b .

Thereby (15) is proved and especially (8).

2 The free Lorenzen algebra in two small steps
Let M be a partially ordered set. Let us define the following inductively the negations and conjunctions
of elements of M . Let H0 be the set M . Let Hi+1 be the union of Hi with the set of formal negations φ̄
and formal conjunctions φ ∧ ψ of elements of Hi. The following formula induction holds: if a claim holds

• for each prime formula, that is, for each element of H0,
• for the negation of a formula if for the formula,
• for the conjunction of two formulas if for the formulas,

then it holds for each formula.

2.1 A calculus of sequents on the left side
We start by defining a calculus in which all theorems have the form Γ ⊢, where Γ is a finite sequent, that
is, a multiset of formulas φ1, . . . , φn. Their meaning is that Γ is contradictory and their proof explains
why they are. This is inspired by Beth’s method of tableaux.

Here are the axioms and the three rules of our calculus. All three rules will turn out to be reversible.

left ⊢-axiom
p, q̄,∆ ⊢

if p, q are prime and p ⩽ q in M

φ,ψ,Γ ⊢
∧ ⊢

φ ∧ ψ,Γ ⊢
φ,Γ ⊢

⊢¯̄φ,Γ ⊢
φ̄,Γ ⊢ ψ̄,Γ ⊢

∧ ⊢
φ ∧ ψ,Γ ⊢

The following theorem induction holds: if a claim holds
• for each prime theorem, that is, for each left ⊢-axiom,
• for the conclusion of each rule whose premisses are theorems if for these premisses,
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then it holds for each theorem.
Note that each of the three rules produces a formula in its conclusion that cannot be produced by any

of the two other rules, respectively a conjunction, a double negation and the negation of a conjunction.
In particular, this implies that each rule is reversible, as shows a theorem induction:
• the conclusion of each rule is not a prime theorem;
• if it is a theorem, then either it follows by this very rule from the very premisses we are wishing for,

or it follows by another rule
– that does not touch respectively the conjunction, the double negation or the negation of a

conjunction,
– from premisses to which we may apply the induction hypothesis,

and then we get the premisses we are looking for by applying the other rule.
Let us now derive three rules:

Γ ⊢
left thinning

Γ,∆ ⊢
Γ,∆,∆ ⊢

left ⊢-contraction
Γ,∆ ⊢
φ̄,Γ ⊢ φ,∆ ⊢

left ⊢-cut
Γ,∆ ⊢

Left thinning. Proof by theorem induction. If Γ is a prime theorem, Γ has the form p, q̄,Γ′ with
p, q prime and p ⩽ q. Then holds

left ⊢-axiom
p, q̄,Γ′,∆ ⊢

If Γ ⊢ is conclusion of a rule, let the claim hold for the premisses. There are three cases, one for each rule,
and in each case, it suffices to apply the claim to the premisses and then the rule.

Left contraction. It suffices to prove
φ, φ,Γ ⊢

left ⊢-contraction
φ,Γ ⊢

Proof by formula induction. Suppose φ is a prime formula p and let us do a proof by theorem induction.
If p, p,Γ ⊢ is a prime theorem, there are two cases.

• Γ has the form p′, q̄,Γ′ with p′, q prime formulas and p′ ⩽ q. Then holds

left ⊢-axiom
p′, q̄,Γ′, p ⊢

• Γ has the form q̄,Γ′ with q a prime formula and p ⩽ q. Then holds

left ⊢-axiom
p, q̄,Γ′ ⊢

If p, p,Γ ⊢ is conclusion of a rule, let the claim hold for the premisses. There are three cases as before and
one concludes similarly.

Now suppose that contraction holds for formulas in Hi. Let us prove by theorem induction that it
holds for negations of formulas φ in Hi. If φ̄, φ̄,Γ ⊢ is a prime theorem, then Γ has the form p, q̄,Γ′ with
p, q prime formulas and p ⩽ q, so that holds

left ⊢-axiom
p, q̄,Γ′, φ̄ ⊢

Suppose that φ̄, φ̄,Γ ⊢ is conclusion of a rule and let the claim hold for the premisses. There are three
cases.
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• φ̄, φ̄,Γ ⊢ is a theorem that follows from an application of a rule that does not touch φ̄, φ̄. It suffices
to apply the claim to the premisses, and then the rule.

• φ has the form ψ̄. Then holds

¯̄ψ, ¯̄ψ,Γ ⊢
reverse ⊢

ψ, ¯̄ψ,Γ ⊢
reverse ⊢

ψ, ψ,Γ ⊢
formula induction claim

ψ,Γ ⊢
⊢¯̄ψ,Γ ⊢

• φ has the form ψ ∧ χ. Then holds

ψ ∧ χ, ψ ∧ χ,Γ ⊢
reverse ∧ ⊢

ψ̄, ψ ∧ χ,Γ ⊢
reverse ∧ ⊢

ψ̄, ψ̄,Γ ⊢
formula induction claim

ψ̄,Γ ⊢

ψ ∧ χ, ψ ∧ χ,Γ ⊢
reverse ∧ ⊢

χ̄, ψ ∧ χ,Γ ⊢
reverse ∧ ⊢

χ̄, χ̄,Γ ⊢
formula induction claim

χ̄,Γ ⊢
∧ ⊢

ψ ∧ χ,Γ ⊢
Let us prove that contraction holds for conjunctions of formulas φ, ψ in Hi.

φ ∧ ψ, φ ∧ ψ,Γ ⊢
reverse ∧ ⊢

φ, ψ, φ ∧ ψ,Γ ⊢
reverse ∧ ⊢

φ, ψ, φ, ψ,Γ ⊢
formula induction claim

φ, ψ, ψ,Γ ⊢
formula induction claim

φ, ψ,Γ ⊢

Left cut. Proof by formula induction. Suppose φ is a prime formula p and let us do a proof by double
theorem induction. If φ̄,Γ ⊢ and φ,∆ ⊢ are prime theorems, there are three cases.

• Γ has the form p′, q′,Γ′ or ∆ has the form p′, q′,∆′, where p′, q′ are prime formulas such that p′ ⩽ q′.
Then holds

left ⊢-axiom
p′, q′,Γ′,∆ ⊢ or

left ⊢-axiom
p′, q′,∆′,Γ ⊢

• Γ has the form p′,Γ′ and ∆ has the form q′,∆′, where p′, q′ are prime formulas such that p′ ⩽ p ⩽ q′.
Then holds

left ⊢-axiom
p′, q′,Γ′,∆′ ⊢

Now suppose that cut holds for formulas in Hi. Then it holds for their negation:

¯̄φ,Γ ⊢
reverse ⊢

φ,Γ ⊢ φ̄,∆ ⊢
left ⊢-cut

Γ,∆

and for their concatenation:

φ ∧ ψ,Γ ⊢
reverse ∧ ⊢

ψ̄,Γ ⊢

φ ∧ ψ,Γ ⊢
reverse ∧ ⊢

φ̄,Γ ⊢
φ ∧ ψ,∆ ⊢

reverse ∧ ⊢
φ, ψ,∆ ⊢

left ⊢-cut
Γ, ψ,∆ ⊢

left ⊢-cut
Γ,Γ,∆ ⊢

⊢-contraction
Γ,∆ ⊢
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2.2 Extension of the calculus to the right side
We shall now extend this calculus by adding axioms, two rules that inject the previous calculus (remind
that p.o.e. stands for principle of explosion) and a rule for conjunctions on the right. The last two rules
will turn out to be reversible:

right ⊢-axiom
p,Γ ⊢ q

if p, q are prime and p ⩽ q in M

Γ ⊢
⊢-p.o.e.

Γ ⊢ p
if p is prime

Γ, φ ⊢
⊢

Γ ⊢ φ̄

Γ ⊢ φ Γ ⊢ ψ
⊢ ∧

Γ ⊢ φ ∧ ψ

The extended calculus comes with a corresponding theorem induction: if a claim holds
• for each prime theorem, that is, for each application of the left ⊢-axiom or of the right ⊢-axiom rule,
• for the conclusion of each rule whose premisses are theorems if for these premisses,

then it holds for each theorem.
Note that the two last rules produce a formula in their conclusion that cannot be produced by any of

the other rules, respectively a negation and a conjunction on the right.
In particular, this implies that each of the rules ⊢ and ⊢ ∧ is reversible, as shows a theorem induction

in the same way as for the left side calculus.
Furthermore, the following fact will be important in the proofs below: if q is a prime formula and Γ ⊢ q

is a theorem, then Γ has the form p,Γ′ with p ⊢ q a theorem, or Γ ⊢ is a theorem.
Let us now derive two rules.

Γ ⊢ φ
⊢

Γ, φ̄ ⊢
Γ ⊢ φ φ,∆ ⊢ ψ

⊢-cut
Γ,∆ ⊢ ψ

Left negation. Proof by formula induction. If φ is a prime formula q, let us do a theorem induction. If
Γ ⊢ q is a prime theorem, then Γ has the form p,Γ′ with p a prime formula and p ⩽ q. Then holds

left ⊢-axiom
p, q̄,Γ′ ⊢

If Γ ⊢ q is conclusion of a rule, it is conclusion of rule ⊢-p.o.e. with premiss Γ ⊢; then holds Γ, q̄ ⊢ by left

thinning.
If φ is a negation ψ̄, then

Γ ⊢ ψ̄
reverse ⊢

Γ, ψ ⊢
⊢

Γ, ¯̄ψ ⊢
Now suppose that φ is a conjunction ψ ∧ χ and suppose that ⊢ holds for each of the formulas ψ

and χ. Then holds
Γ ⊢ ψ ∧ χ

reverse ⊢ ∧
Γ ⊢ ψ

claim
Γ, ψ̄ ⊢

Γ ⊢ ψ ∧ χ
reverse ⊢ ∧

Γ ⊢ χ
claim

Γ, χ̄ ⊢
∧ ⊢

Γ, ψ ∧ χ ⊢
11



Cut. Proof by formula induction on ψ. If ψ is a prime formula q, let us do a theorem induction on
φ,∆ ⊢ q. If φ,∆ ⊢ q is a prime theorem, then there are two cases

• ∆ has the form p,∆′ with p a prime formula such that p ⩽ q. Then holds

right ⊢-axiom
p,∆′,Γ ⊢ q

• φ is a prime formula p and p ⩽ q holds. Let us do a theorem induction on Γ ⊢ p. If Γ ⊢ p is a prime
theorem, then Γ has the form p′,Γ′ with p′ a prime formula such that p′ ⩽ p, so that p′ ⩽ q and
holds

right ⊢-axiom
p′,Γ′,∆ ⊢ q

If Γ ⊢ p is conclusion of a rule, it is conclusion of rule ⊢-p.o.e. with premiss Γ ⊢; then holds

Γ ⊢
left thinning

Γ,∆ ⊢
⊢-p.o.e.

Γ,∆ ⊢ q

If φ,∆ ⊢ q is conclusion of a rule, it is conclusion of rule ⊢-p.o.e. with premiss φ,∆ ⊢; then holds

Γ ⊢ φ
⊢

Γ, φ̄ ⊢ φ,∆ ⊢
left ⊢-cut

Γ,∆ ⊢
⊢-p.o.e.

Γ,∆ ⊢ q

If ψ is a negation χ̄, then holds

Γ ⊢ φ
⊢

Γ, φ̄ ⊢
φ,∆ ⊢ χ̄

reverse ⊢
φ,∆, χ ⊢

left ⊢-cut
Γ,∆, χ ⊢

⊢
Γ,∆ ⊢ χ̄

Now suppose that cut holds for formulas ψ, χ. Then holds

Γ ⊢ φ

φ,∆ ⊢ ψ ∧ χ
reverse ⊢ ∧

φ,∆ ⊢ ψ
⊢-cut

Γ,∆ ⊢ ψ

Γ ⊢ φ

φ,∆ ⊢ ψ ∧ χ
reverse ⊢ ∧

φ,∆ ⊢ χ
⊢-cut

Γ,∆ ⊢ χ
⊢ ∧

Γ,∆ ⊢ ψ ∧ χ

2.3 Further derived rules
The two following rules also hold.

Γ ⊢ φ
⊢-thinning

Γ,∆ ⊢ φ

Γ,∆,∆ ⊢ ψ
⊢-contraction

Γ,∆ ⊢ ψ

Thinning. This is proved exactly as before.
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Contraction. It suffices to prove

φ, φ,Γ ⊢ ψ
⊢-contraction

φ,Γ ⊢ ψ

Proof by formula induction on ψ. If ψ is a prime formula q, let us do a theorem induction on φ, φ,Γ ⊢ q.
If φ, φ,Γ ⊢ q is a prime theorem, there are two cases.

• Γ has the form p,Γ′ with p a prime formula and p ⩽ q. Then holds

right ⊢-axiom
p,Γ′, φ ⊢ q

• φ is a prime formula p and p ⩽ q. Then holds

right ⊢-axiom
p,Γ ⊢ q

If φ, φ,Γ ⊢ q is conclusion of a rule, it is conclusion of rule ⊢-p.o.e. with premiss φ, φ,Γ ⊢; then holds

φ, φ,Γ ⊢
left ⊢-contraction

φ,Γ ⊢
⊢-p.o.e.

φ,Γ ⊢ q

If ψ is a negation χ̄, then holds
φ, φ,Γ ⊢ χ̄

reverse ⊢
φ, φ,Γ, χ ⊢

left ⊢-contraction
φ,Γ, χ ⊢

⊢
φ,Γ ⊢ χ̄

If contraction holds for two formulas ψ, χ, then holds

φ, φ,Γ ⊢ ψ ∧ χ
reverse ⊢ ∧

φ, φ,Γ ⊢ ψ
claim

φ,Γ ⊢ ψ

φ, φ,Γ ⊢ ψ ∧ χ
reverse ⊢ ∧

φ, φ,Γ ⊢ χ
claim

φ,Γ ⊢ χ
⊢ ∧

φ,Γ ⊢ ψ ∧ χ

2.4 Definition of the free Lorenzen algebra
Let H∞ be the union of the Hi and let H be the union of H∞ with two further elements: 0 and 1. We
define an order on H by the following truth table:

⩽ 0 ψ 1
0 true true true
φ φ ⊢ φ ⊢ ψ true
1 false false true
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