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Résumé

1 Trois cas de figure pour I’inconditionnalité

Toutes nos recherches sont liées a la notion d’inconditionnalité, motivée par la question suivante :

Question 1.1. Lorsqu’un élément x d’un espace normé admet une représentation comme combinaison
linéaire ) ¢ eq d’éléments e4, de quelle maniére la norme de x dépend-elle du signe des coefficients ¢4 ?

Les réponses que nous obtiendrons seront en termes du support de x, c’est-a-dire de ’ensemble I
d’indices g pour lesquels ¢, # 0.
Selon la situation, un changement du signe des coefficients ¢,

— fait varier la norme de = de maniére bornée et on dira que (e4)qer est une suite basique incon-
ditionnelle ;

— multiplie au plus la norme de x par un facteur D explicite et D sera la constante d’incondition-
nalité de la suite (eq)qer;

— ne change pas la norme de z et on parlera de suite basique (eq)qer 1-inconditionnelle ;

Lorsque nous chercherons a déterminer une constante d’inconditionnalié exacte, nous devrons
préciser de quelle maniére nous nous permettons de changer le signe des coefficients :

— de maniére réelle en multipliant certains coefficients par —1, ou
— de maniére compleze en les faisant tourner d’un angle ¢,.
Voici trois cas de figure dans lesquels cette question se pose.

(a) Si z est une fonction sur un groupe abélien compact et les e, sont les caracteres de ce groupe,
cette représentation est la série de Fourier de x et un changement du signe des coefficients de
Fourier est une convolution ou multiplication de Fourier unimodulaire.

(b) Si x est un opérateur et les e, sont les matrices élémentaires, cette représentation est la matrice
de = et un changement du signe des coefficients matriciels est une multiplication de Schur
unimodulaire.

(¢) Si z est un élément de l’algebre d’un groupe discret G et les e, sont les fonctions indicatrices
des éléments de G, alors un changement du signe des coeflicients est une multiplication de
Herz-Schur unimodulaire.

2 Définition des suites basiques inconditionnelles

Voici une définition formelle qui reprend la discussion ci-dessus.

Définition 2.1. Soit X un espace vectoriel quasi-normé muni d’une suite distinguée (e,) dans X.
Soit (eq)qer une sous-suite. Soit S=T={z€ C: |z|] =1} (vs. S={-1,1}.)

(a) I est inconditionnelle dans X s’il y a une constante D telle que
HZeqaqeq <DHZaqeq
qel qel

pour tout choix de signes e, € S et toute suite de coefficients complexes a, de support fini. Sa
constante d’inconditionnalité complexe (vs. réelle) est le minimum de telles constantes D.

(1)
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(b) I est I-inconditionnelle complexe (vs. réelle) dans X si sa constante d’inconditionnalité com-
plexe (vs. réelle) vaut 1. Cela veut dire que I'inégalité (1) devient 1’égalité

qel qel

3 Matrices et multiplicateurs de Schur pour les classes de
Schatten-von-Neumann

Cette thématique de recherche correspond au cas de figure (b) ci-dessus : (eq) est la suite des matrices
élémentaires.

Notons C' I’ensemble des indices colonne et R I’ensemble des indices ligne de matrices, en général
deux copies de N, et soit I une partie de R x C'. La propriété d’inconditionnalité de I peut aussi se
formuler ainsi : une suite I est inconditionnelle de constante D si et seulement si, pour toute matrice ¢
a coefficients complexes (vs. réels) et pour tout = dont les coefficients de matrice sont nuls hors de T
(dont lespace sera noté X) on a

[l x| < Dsup [@re| [|]l,
ol ¢ * x est le produit de Schur (ou de Hadamard) défini par

((,0 * ‘T)TC = Prclre-

L’opérateur de multiplication par ¢ est un multiplicateur de Schur relatif. On peut aussi décrire
les multiplicateurs de Schur relatifs comme les opérateurs diagonaux sur la suite (e4)qer-
Notre étude se concentrera sur les classes de Schatten-von-Neumann X = SP dont la quasi-norme
1/
est donnée par ||z| = (tr (z*x)? / %) Tl s’agit de la contrepartie non commutative des espaces ¢P.
Lorsque p > 1, 'espace de Banach SP admet une structure d’espace d’opérateurs canonique qui rend

la définition suivante naturelle.

Définition 3.1. I est complétement inconditionnelle dans SP s’il y a une constante D telle que (1)
vaut pour tout choix de signes €, € S et toute suite de coefficients opérateurs a, € SP & support fini.
Sa constante d’inconditionnalité compléte complexe (vs. réelle) est le minimum de telles constantes D.

De la méme maniére, on parle de la norme compléte de multiplicateurs de Schur relatifs. On ne sait
pas si on définit vraiment ainsi une classe nouvelle ; ce serait répondre a la conjecture de Gilles Pisier
qu’il existe des multiplicateurs de Schur bornés sur S? (p # 1,2,00) qui ne sont pas complétement
bornés.

Une suite inconditionnelle de matrices élémentaires dans S°° est en fait un ensemble V-Sidon,

classe que Varopoulos a introduite dans ’étude des algebres tensorielles ¢ (C) <§> co(R) sur des espaces
discrets (voir le théoréme B.5.1 page 40 qui rassemble les résultats connus : I doit étre réunion finie
d’ensembles qui soit contiennent au plus un élément par ligne, soit contiennent au plus un élément
par colonne.) Notre étude généralise ainsi les résultats de Varopoulos a toutes les classes de Schatten-
von-Neumann.

4 Suites de matrices élémentaires et graphes bipartis

Les suites inconditionnelles de matrices élémentaires forment la contrepartie matricielle des en-
sembles A(p) de Walter Rudin étudiés en analyse de Fourier (le cas de figure (a) de la section 1.) Alors
que ’étude des ensembles A(p) voit surgir naturellement leurs propriétés arithmétiques (de théorie
additive des nombres,) I'inconditionnalité de I se traduit avantageusement en termes de théorie des
graphes.

Nous allons donc considérer I comme un graphe biparti dont les deux classes (« couleurs »)
de sommets sont C' et R, dont les éléments seront appelés respectivement « sommets colonne » et
« sommets ligne. » Ses arétes (non dirigées) relient seulement des sommets ligne r € R avec des
sommets colonne ¢ € C, et cela exactement lorsque (r,c) € I. La matrice (x;(r, ¢))(rc)erxc fonction
caractéristique de I est la matrice d’incidence de ce graphe biparti.

Voici deux exemples importants.
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Exemple 4.1. Soit s un entier. Considérons I’ensemble
I={(r,c)€Z/SLXLJSL 1 —c€{0,1}}.

Le graphe biparti associé est le cycle (ligne 0, colonne 0, ligne 1, colonne 1, .. ., ligne s—1, colonne s—1)
de longueur 2s. La matrice d’incidence de ce graphe est

0 1 s—2 s—1

0 1 0 . 0 1

1 1 1 .0 0

s—21 0 0 1 0
s—1 0 0 1 1

Ezxemple 4.2. Considérons I’ensemble
I={(r,c) €Z)TLXL/TZ:r+c€ {0,1,3} }.

Le graphe biparti associé est le graphe de Heawood.

La matrice d’incidence de ce graphe est

01 2 3 4 5 86
of1 1 0 1 0 0 O
111 01 0 0 0 1
210 1 0 0 0 1 1
3|1 0 0 01 10
410 0 0 1 1 0 1
50 0 1 1 0 1 0
6\0 1 1 0 1 0 O

5 Matrices lacunaires et inconditionnalité

Dans l’article Lacunary matrices, nous montrons que ces sous-suites doivent satisfaire la condition de
densité suivante, qui est 'analogue de la condition de maille de Walter Rudin [88, Theorem 3.5] pour
les ensembles A(p).

Théoréme 5.1 (page 26). Si I est inconditionnelle de constante D dans SP, alors la taille #1' de
tout sous-graphe I' induit par m sommets colonne et n sommets ligne, c¢’est-a-dire le cardinal de toute
partie I' = INR' x C' avec #C' = m et #R' = n, satisfait

41 D2 (ml/pnl/Q +m1/2nl/p)2 (2)

<
< 4D?* min(m, n)*/? max(m, n).

Les exposants de cette inégalité sont optimauxr dans les trois cas suivants :
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(a) sim oun est fixé (trivial;)
(b) sip=4 (voir le graphe aléatoire ci-dessous;)

(c) sip est un entier pair et m =n (voir [37, Theorem 4.8].)

Si m # n, nous construisons des graphes aléatoires qui testent I'inégalité (2) sans en montrer
toujours 'optimalité.

Théoréme 5.2 (page 28). Pour tout € > 0 et tout entier pair p > 4, il existe un graphe I de taille

1—¢ 1/2

min(m, n) sip=4
max(m,n)"?=¢ min(m, n)/2+2/7 s p > 6.

LI~ {max(m, n)

et de constante d’inconditionnalité indépendante de m et n lorsque mn — .

Si p est un entier pair, nous donnons aussi une condition suffisante en termes de sentiers sur un
graphe biparti : un sentier de longueur s dans I est une suite (vg, v1,...,vs) de sommets alternative-
ment dans R et C telle que les arétes reliant vy & vy, v1 & v, etc. correspondent & des élements deux
a deux distincts de I (alors qu'un chemin est requis d’avoir méme tous ses sommets distincts et que
les sommets d’une promenade sont admis & se répéter.) Le théoréme suivant est aussi 'analogue d’un
théoréme de Walter Rudin.

Théoréme 5.3 (page 24). Soit p un entier pair. Si le nombre de sentiers dans I de longueur p/2
entre deur sommets donnés admet une borne uniforme, alors I est inconditionnelle dans SP.

Le calcul suivant montre le lien étroit entre la norme SP avec p = 2s un entier pair et les prome-
nades fermées de longueur p dans ce graphe.

D S
Zaqeq’ = tI‘( Z (arcerc)*(ar/c/er/c’))

g€l (r,e), () el

s
=tr Z H(arici ecin)(argc;er;cg)
=1

(r1,61),(71,€1) ey 1=
(,’,5765)7(,’,;16;)6]

S
= E H AriciQricita (Ou Cs+1 = cl')
i=1

(r1,e1),(r1,¢2)5- 1,
(rs,¢s),(rs,cs41)El

tr

Cette derniére somme est indexée par les promenades fermées (c1,71, ¢, . .., Cs, r's) de longueur p dans
le graphe associé a I'!

La conjonction des théorémes 5.1 et 5.3 donne une nouvelle preuve du théoreme de Paul Erdés
selon lequel un graphe sur v sommets sans circuit de longueur paire p est de taille bornée par v!*+2/?,
4 une constante prés (un circuit est un sentier fermé.) La généralisation de ce théoréme des circuits
aux cycles (chemins fermés) par Bondy et Simonovits [12] échappe & notre méthode. L’existence de
graphes qui montreraient ’optimalité de cette estimation est une question ouverte posée par Erdds
en 1963.

6 Matrices lacunaires et 1-inconditionnalité

L’article Cycles and 1-unconditional matrices aboutit a une caractérisation des suites basiques 1-in-
conditionnelles dans SP.

Un des ingrédients est 1’étude des multiplicateurs de Schur unimodulaires sur un cycle. Nous
obtenons en particulier la proposition suivante.

Proposition 6.1 (page 44). Si p n’est pas un entier pair, alors € est un multiplicateur de Schur
unimodulaire isométrique sur un cycle I pour SP si et seulement si € peut étre interpolée par une
matrice de rang 1 : €,c = Ceny pour (r,¢) € I, ou ¢ € TC et n € TE,
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Esquisse de démonstration. La condition est bien suffisante : on a alors

EX T = Tr (:Crc) CC

Etudions la nécessité. On peut supposer que le cycle I soit donné comme dans exemple 4.1. Soit € €
T! une matrice de nombres unimodulaires partiellement spécifiée. Il est possible de multiplier les
lignes et les colonnes de € par des nombres complexes de module 1 de sorte que € devienne la matrice
circulante

0 1 - s—2 s—1
0 1 0o . 0 0
1 9 1 .0 0
. L . . 3)
s—2 | 0 0o .1 0
s=1\0 0 . 9 1

avec 9 racine siéme de €gpeig ... €5—1,5—1€0,s—1. Un argument de transfert montre que la norme du
multiplicateur de Schur par € sur I borne le multiplicateur de Fourier relatif pu: a + bz — a +
¥bz dans le groupe G des racines siémes de 'unité, ot on norme a + bz par la norme L? : ||a +
bzl = (s7'3 ..y la+bz|P) Y7 voir la proposition 13.2 (a). Si p est une isométrie, le théoréme
d’équimesurabilité de Plotkin-Rudin montre que z et ¥z ont méme distribution et donc ¥°* =1. O

On peut calculer la norme exacte du multiplicateur de Schur relatif € sur S} et sur S¥ : elle égale
la norme de p sur L} (G) et sur LY(G) avec A = {1, 2} et cette norme est

max,s—_1 [ + 2|
|1 + eiﬂ'/s|

(proposition B.7.1(d) page 44.)
Cette proposition est une des étapes dans la démonstration du théoréme suivant.

Théoréme 6.2 (page 45). Soit p un nombre réel strictement positif qui ne soit pas un entier pair.
Les propriétés suivantes sont équivalentes.

— I est complétement I-inconditionnelle complexe dans SP.

— I est 1-inconditionnelle réelle dans SP.

— I est une réunion disjointe d’arbres, c’est-a-dire que I ne contient aucun cycle.

~ Toute suite de signes complexes € € T! peut étre interpolée par une matrice de rang 1.

- I est un ensemble de Varopoulos de V-interpolation de constante 1 : toute suite ¢ € {7 peut

étre interpolée par un tenseur u € L Q%E? avee ||ull = ||l¢]l
— I est un ensemble d’interpolation isométrique pour les multiplicateurs de Schur : toute suite p €

?° est la restriction d’un multiplicateur de Schur sur S de norme ||¢||.

Dans le cas ou p est un entier pair, la combinatoire devient plus compliquée : cela se reflete dans
la proposition suivante.

Proposition 6.3 (page 44). Si p est un entier pair, alors € est un multiplicateur de Schur unimodu-
laire isométrique sur un cycle I de longueur 2s pour SP si et seulement si p/2 € {1,2,...,5s — 1} ou
si € peut étre interpolée par une matrice de rang 1.

Cette proposition est une des étapes dans la démonstration de la caractérisation suivante.

Théoréme 6.4 (page 47). Soit p un entier pair. Les propriétés suivantes sont équivalentes.

— I est complétement I-inconditionnelle complexe dans SP.
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— I est 1-inconditionnelle réelle dans SP.

— I ne contient aucun cycle de longueur paire inférieure ou égale a p.

Tllustrons ce théoreme sur ’exemple 4.2. Le graphe de Heawood ne contient aucun cycle de lon-
gueur 4 : donc la norme S* de sa matrice d’incidence ne varie pas si on change le signe de ses
coeflicients.

La propriété de ne pas contenir de cycle de longueur paire donnée a été tres étudiée en théorie
des graphes. Quelle conséquence a-t-elle pour la taille du graphe ? La section suivante en propose un
résumé, a comparer aux résultats du théoréeme 5.1.

7 Graphes bipartis sans cycle de longueur donnée

Proposition 7.1 (page 53). Soient2<n<m, [ CRXC avec #C =n et #R=m, ete = #1.

(a) Sil est 1-inconditionnelle dans S* — I ne contient pas de cycle de longueur 4 — alors

et (-0 (55 -1)

c’est-a-dire e — me — mn(n — 1) < 0. On a égalité si et seulement si I est le graphe d’inci-
dence d’un systéme de Steiner S(2,e/m;n) sur n points et m blocs (voir [9, Def. 1.3.1] pour la
définition des systémes de Steiner.)

(b) Si I est 1-inconditionnelle dans S® — I ne contient pas de cycle de longueur 4 ni 6 — alors

2
e (G ()G () ()
m m n m n

c’est-a-dire € — (m +n)e? + 2mne — m?n? < 0. On a égalité si et seulement si I est le graphe
d’incidence du quadrangle (le cycle de longueur 8) ou d’un quadrangle généralisé avec n points
et m lignes (voir [56, Def. 1.8.1] pour la définition des polygones généralisés; l'exemple 4.2
décrit le plus petit quadrangle généralisé.)

c) Si 1 est 1-inconditionnelle dans SP avec p = 2k un entier pair — I ne contient pas de cycle de
Si I est 1-i diti lle d SP p =2k tier pai I tient pas de cycle d
longueur inférieure ou égale & p — alors

Fe 131 e 14
2 2
> - — - — .
w23 (1) () (@
=0
On a égalité si et seulement si I est le graphe d’incidence du (k+ 1)gone (le cycle de longueur
2k +2) ou d’un (k4 1)gone généralisé avec n points et m lignes.

Les résultats (a) et (b) ci-dessus ont été obtenus dans la note The size of bipartite graphs with
girth eight (voir pages 65 et 66), alors que le cas général résulte de travaux de Noga Alon, Shlomo
Hoory et Nathan Linial (voir [44]).

L’inégalité (4) montre que si I est l-inconditionnelle dans S?*, alors # I < n*+t/* 4 (s —1)n/s. Si
k ¢ {2,3,5,7}, il n’existe pas de (k+ 1)gones généralisés de taille arbitrairement grande et 1’existence
de graphes arbitrairement grands sans cycle de longueur 2k de taille minorée par n'T'/* & une
constante pres est une question importante en théorie des graphes extrémaux.

La recherche pratique de graphes extrémaux nous a amenés a écrire un algorithme implémenté en
langage C qui énumere tous les graphes bipartis d’'un nombre de sommets donnés et teste ’existence
de cycles. La proposition suivante, démontrée indépendamment par Adolf Mader et Otto Mutzbauer
[55], réduit le nombre de matrices d’incidence de graphes bipartis & tester.

Proposition 7.2 (page 71). Toute matrice d coefficients 0 ou 1 peut étre simultanément ordon-
née selon les ordres lexicographiques des lignes et des colonnes (c’est-a-dire ordre des lignes et des
colonnes lues comme des nombres binaires) par une permutation des lignes et des colonnes.

En effet, une permutation des lignes et des colonnes de la matrice d’incidence d’un graphe biparti
consiste juste a réindexer les sommets de ce graphe.
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8 Matrices lacunaires et ensembles lacunaires d’un groupe abélien
discret

Voici la traduction naturelle entre inconditionnalités de Fourier et matricielle (les cas (a) et (b) de la
section 1.)

Proposition 8.1 (page 52). Soit I C R x C. Soit p € [1,00] : les propriétés suivantes sont équiva-
lentes.
— I est complétement inconditionnelle dans SP.

— La suite de produits de Walsh de longueur deuz {ec€.. : (r,c) € I} est complétement incondition-
nelle dans LP({—1,1} x {-1,1}%).

- La suite de produits de deux fonctions de Steinhaus {zcz,. : (r,c) € I} est complétement incon-
ditionnelle dans LP(TC x T%).

Soit p € (0,00] : les propriétés suivantes sont équivalentes.
— I est 1-inconditionnelle dans SP.
~ La suite {eq€.. : (r,c) € I} est 1-inconditionnelle dans LP({—1,1}¢ x {—1,1}1).
~ La suite {22! : (r,c) € I} est I-inconditionnelle dans LP(TC x T%).

La proposition B.11.1 (page 52) décrit dans quelle mesure cette proposition reste vraie pour
d’autres groupes discrets.

9 Sous-espaces S} 1-complémentés

En route pour ces résultats, nous obtenons aussi la caractérisation suivante.

Proposition 9.1 (page 37). Le sous-espace S} de SP formé des opérateurs a support dans I est
1-complémenté si et seulement si I est la réunion disjointe de graphes bipartis complets R; x C; : sa
matrice d’incidence est, a une permutation des colonnes et des lignes prés, bloc-diagonale :

C1 Ca C3

g (1) (0) (0)
B [ (0) (1) (0)
& [ (0) (0) (1)

10 Matrices de rang 1 partiellement spécifiées

Si ¢ est une matrice de rang 1, p = & ® y, alors 'opérateur de multiplication de Schur par ¢ est de
norme sup|x, | sup|y.|. Or les exemples de calcul exact de normes de tels opérateurs sont tres rares et
nous avons voulu savoir comment cette norme change lorsque ¢ agit sur un sous-espace S¥.

Théoréme 10.1 (page 91). Soit I C Rx C et considérons (z,)rer €t (Yc)cec. Alors le multiplicateur
de Schur relatif S} donné par (z,yc)(r.c)er est de norme sup(, oyelzryel.

11 Propriété d’approximation métriquement inconditionnelle dans S/

Meéme si I n’est pas 1-inconditionnelle dans 'espace SP, I'espace S} pourrait néanmoins admettre une
autre base 1-inconditionnelle. Pour approcher de telles questions, Peter G. Casazza et Nigel J. Kalton
ont introduit la propriété (c) ci-dessous.

Définition 11.1. Soit X un espace de Banach séparable et S =T (vs. S = {—1,1}.)

(a) Une suite (T}) d’opérateurs sur X est une suite approzimante si chaque T}, est de rang fini et
Trx — x pour chaque z € X.
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(b) ([73].) Posons ATy, = Ty, — Tr—1. L’espace X a la propriété d’approzimation inconditionnelle s’il
existe une suite approximante (T}) telle que pour une certaine constante D

zn: ekATk
k=1

La constante d’inconditionnalité complexe (vs. réelle) de (T} ) est la plus petite des constantes D.

< D pour tout n et tous e € S.

(¢) ([22, §3], [32, §8].) L’espace X a la propriété d’approximation métriquement inconditionnelle
complexe (vs. réelle) si, pour tout 6 > 0, X admet une suite approximante de constante d’in-
conditionnalité complexe (vs. réelle) 1+ 4.

Voici notre description des sous-espaces S§ métriquement inconditionnels :

Théoréme 11.2. On a deux cas.
- Sipe[l,00)\{2,4,6,...} et SY a la propriété d’approximation métriquement inconditionnelle
réelle, alors la distance d’un sommet colonne a un sommet colonne est asymptotiquement infinie
dans I : leur distance devient arbitrairement grande en effacant un nombre fini d’arétes de I.
- Sip € {2,4,6,...}, Uespace SY a la propriété d’approzimation métriquement inconditionnelle
complexe, ou réelle, si et seulement si deux sommets da distance 2j + 1 < p/2 sont d distance
asymptotiquement supérieure ou égale a p — 25 + 1.

12 Inégalités matricielles

L’article Matriz inequalities with applications to the theory of iterated kernels montre I'inégalité ma-
tricielle suivante.

Théoréme 12.1 (page 55). Soit A une matrice de taille n X m d coefficients positifs et notons
somme(A) la somme de tous ses coefficients. On a

k termes

—_—~
somme (AA*A .. .A(*)) >

nl = ml5]
ot A% est A* ou A selon la parité de k.

Cette inégalité est la version discréte d’un théoréme sur les itérés d’un noyau (voir la remarque
C.1.4 page 56.) Si on applique cette inégalité a la matrice d’incidence d’un graphe biparti I, on obtient
une minoration optimale du nombre de promenades de longueur k en termes de la taille de I. Dans
le cas k = 3, une généralisation de cette inégalité (le théoreme D.4.4 page 67) donne une minoration
optimale du nombre de chemins (voir le corollaire D.4.6 page 68.)

13 Transfert entre multiplicateurs de Schur et de Fourier

Le théoréme suivant est bien connu.

Proposition 13.1. Soit I' un groupe discret et R,C CT. A A C T associons I = { (r,c) € Rx C :
rc € A}. A o € CN associons ¢ € C! défini par ¢(r,c) = o(rc) pour tout (r,c) € I.
— Soit p > 0. La norme compléte du multiplicateur de Schur relatif ¢ sur S§ est bornée par la
norme compléte du multiplicateur de Fourier relatif o sur LY (7).

— La norme du multiplicateur de Schur relatif ¢ sur S° est bornée par la norme du multiplicateur
de Fourier relatif o sur L (7).

Une forme de réciproque peut étre déduite du théoréme limite de Szeg8 matriciel (voir le théo-
réme F.2.1 page 79.)

Proposition 13.2. Soit I' un groupe discret moyennable et soit I C T' x I' un ensemble toeplitzien
au sens que I = {(r,c) € T x T' : r¢! € A} pour une partie A de T'. Soit ¢ € C! une matrice
toeplitzienne au le sens qu’il existe o € C* tel que ¢(r,c) = o(rc™') pour tout (r,c) € I.
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(a) Soit p > 0. La norme du multiplicateur de Fourier relatif o sur L (1) est le supremum de la
norme du multiplicateur de Schur relatif  sur des sous-espaces de matrices de Toeplitz tronquées
dans SY.

(b) De plus, la norme compléte du multiplicateur de Fourier relatif o sur LY (7) et la norme compléte
du multiplicateur de Schur relatif ¢ sur S§ sont égales.

(¢) La norme du multiplicateur de Fourier relatif o sur L3°(7) et la norme du multiplicateur de
Schur relatif ¢ sur S3° sont égales.

14 Ensembles lacunaires somme de deux ensembles infinis

Il est bien connu que les ensembles de Sidon ne peuvent contenir la somme de deux ensembles infinis ;
Daniel Li a obtenu la méme conclusion pour les ensembles A tels que Cy admet une suite approximante
métriquement inconditionnelle. Nous rassemblons ces deux résultats dans le théoreme suivant.

Théoréme 14.1. Soit I' un groupe abélien discret de caractéres sur un groupe abélien compact G.
Soit A C T. SiT contient la somme R+ C de deuzx ensembles infinis R et C, alors Uespace Cy(G)
n‘admet pas de suite approrimante inconditionnelle.

Esquisse de preuve. On utilise I'hypothése pour montrer qu’il existe des parties infinies R’ et C’ sur
lesquelles une somme d blocs sautés Y (T, ,, —Tr,) agit comme la projection sur la « partie triangu-
laire supérieure » de R’ + C’. Or ce multiplicateur de Fourier relatif se transfere en le multiplicateur
de Schur qu’est la projection de Riesz sur les matrices triangulaires supérieures, qui est notoirement
non bornée. o

Nous obtenons ainsi une preuve élémentaire que I’algébre du disque Cy(T) n’a pas la propriété
d’approximation inconditionnelle, ni I'espace engendré par les fonctions de Walsh de longueur deux
(les produits {r;r;} de deux fonctions de Rademacher) dans C({—1,1}°°), ni 'espace engendré par
les produits {s;s;} de deux fonctions de Steinhaus dans C(T>).

Nous montrons aussi qu’un ensemble « complétement A(p) » ne peut contenir la somme de deux
ensembles infinis (théoreme F.4.8 de la page 85.)

La preuve ci-dessus montre aussi que la constante d’inconditionnalité réelle pour les espaces L (G)
est minorée par la norme complete de la projection de Riesz sur S?. Cela nous a motivés pour calculer
cette norme et, a défaut, la norme complete de la transformation de Hilbert matricielle.

Théoréme 14.2. La norme compléete de la projection de Riesz et de la transformation de Hilbert
matricielle sur SP coincident avec leur norme.

— Sip est un entier pair, la norme de la transformation de Hilbert matricielle est cot(w/2p) (voir

page 87).
— La norme de la projection de Riesz sur S* est /2 (voir page 88).
15 Problémes extrémaux pour les polyndémes trigonométriques

Cette thématique de recherche correspond au cas de figure (a) de la question 1.1, avec R/Z comme
groupe abélien et le module maximum comme norme.

Soit A = {A1,\a,..., A\, } un ensemble de n entiers. Pour n nombres réels positifs 1,7, ..., 7, et
n nombres réels t1,ts,...,t,, considérons le polynéme trigonométrique
f(x) — Tlei(tlJrAlz) + TQei(tQJr)\QI) + . + ,rnei(thrAnz). (5)

La question de I'inconditionnalité dans I’espace C des fonctions continues est alors celle de la dépen-
dance du module maximum du polynéme trigonométrique f par rapport aux arguments (phases) t1,
tay ..o tn.

Voici quatre problémes qui éclairent divers aspects de I'inconditionnalité.
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Probléme extrémal 15.1 (probléme de Mandel’shtam complexe — voir [26, page 2 et le supplé-
ment]). Trouver le minimum du module maximum du polynéme trigonometrique f pour des modules
de coefficients de Fourier r1,73,...,r, donnés :

t %nint max |rlel(t1+)\1m) + r2el(t2+/\zm) doet Tnel(tn+/\nm)|'
1:025..05ln x

Probléme extrémal 15.2. Trouver le minimum du module maximum du polyndéme trigonometrique
f pour un spectre A, des arguments tq,ts,...,t, et la somme des modules r| + ro + --- + 7, des
coefficients de Fourier donnés :

|Tlei(t1+)\1m) + r2ei(t2+)\2m) 4ot Tnei(tn+)\nm)|

min max
T1,72,...,Tn & 71 +7”2+"'+Tn

Probléme 15.3. Trouver le maximum de la variation du module maximum du polyndéme trigono-

metrique f pour un spectre A et une variation des arguments Aty, Ats, ..., At,, donnée. En d’autres
termes, trouver la norme du multiplicateur de Fourier relatif unimodulaire par les signes et eiAtz
ety .
, :

maXI|T16i(t1+)\1z) + r2€i(t2+)\2z) 4 rnei(tn+)\n,z)|

min T n - .
rtl,?,,,,,:n malerlel(t1+At1+)\1z) + r261(t2+At2+A21) 4+t Tnel(tn+Atn,+knm)|
15t2,..0tn

Probléme extrémal 15.4 (constante de Sidon). Trouver le minimum du module maximum du
polynéme trigonometrique f pour un spectre A et la somme des modules ry + 79 + -+ + 7, des
coeflicients de Fourier donnés :

|Tlei(t1+)\1m) + r2ei(t2+)\21) 4ot rnei(tn+)\nm))|

min max
T1,725..3sTm 71 +T2+"'+Tn

t1,t2,...,tn
L’inverse de ce minimum est la constante d’inconditionnalité de A dans ’espace des fonctions conti-
nues : c’est la constante de Sidon de A.

Littlewood [52] et Salem [91] se sont intéressés a ces probléemes. Ils sont aussi apparus dans la théo-
rie du circuit électrique, comme le raconte N. G. Chebotarév : « L. I. Mandel’shtam m’a communiqué
un probléeme sur le choix des phases de courants électriques de fréquences différentes de sorte que la
capacité du courant résultant de faire sauter les fusibles soit minimal » [24, p. 396]. Ce probléme est
une de ses motivations pour proposer une formule pour la valeur des dérivées directionnelles d’une
fonction maximum en fonction des dérivées des fonctions dont on prend le maximum, qui a été un
peu oubliée malgré son caractere naturel.

Formule de N. G. Chebotarév ([26, Theorem VI1.3.2, (3.6)]). Soit I un ouvert de R™ et soit K

oF
un espace compact. Soit F(t,x) une fonction réelle sur I x K qui soit continue, ainsi que —(t,x).

ot
Soit
F*(t) = max F(t,x).
Alors F*(t) admet le développement limité suivant en tout t € I :
oOF
F*(t+h)=F*(t h, —(t h). 6
(k)= () + | max (b Zo(t)) + olh) (6)

Chebotarév utilise en particulier cette formule pour résoudre le probleme d’approximation poly-
nomiale de Chebyshev et le probléme du minimum d’une forme quadratique sur les entiers de Korkin
et Zolotarev.

16 Problémes extrémaux pour les trindmes trigonométriques

Ces problemes sont déja intéressants dans le cas n = 3. Dans l'article The Sidon constant of sets
with three elements, nous avons résolu les problemes extrémaux 15.1 et 15.4 pour ce cas. Nous allons
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supposer, en toute généralité, que A est un ensemble de trois entiers A\; < A2 < A3 tels que As — \q
et A3 — Ao sont premiers entre eux.
Il s’avere que les arguments t1, to, t3 d'un trindéme trigonométrique

f(ZE) — rlei(tl-i-)qz) + r2€i(t2+kgz) + T3ei(t3+kgm) (7)

donnent lieu & un parametre unique, que nous appellerons I’argument du trinome f : la détermination
principale 7 € |—m, 7] de

()\3 — )\g)tl + ()\1 — )\3)252 + ()\2 — )\1)253 mod 277Z. (8)

Nous avons ainsi établi que les arguments minimaux du probléme extrémal 15.1 correspondent &
des multiples de 7 :

Théoréme 16.1 (page 96). Soit A un ensemble de trois entiers. Soient ri, ro et rs trois réels
strictement positifs. Les arquments t1,to,t3 résolvent le probleme extrémal 15.1 si et seulement si

Uargument T du trindome égale . En particulier, t1, to et ts peuvent étre choisis parmi 0 et m.

Ce théoréme permet de déterminer les coefficients de Fourier minimaux pour le probleme extré-
mal 15.4 :

Proposition 16.2 (page 97). Le polynéme suivant résout le probléme extrémal 15.4 :
f(l') = 61(>\3 — )\2)ei/\1:n + 62(A3 — )\1)6iA2I + 63()\2 - /\1)eiA3z

ol €1, 62,63 € {—1,1} sont trois signes réels tels que

— €169 = —1 81 Ao — A1 est pair;
— €163 = —1 si A3 — A1 est pair;
— €263 = —1 si A3 — Ao est pair.

La constante de Sidon de A égale donc cos(m/2(As — A1)~ " et les constantes d’inconditionnalité
complezes et réelles de A dans l’espace des fonctions continues coincident donc pour les ensembles A
a trois éléments.

Nous avions entamé cette direction de recherche pour vérifier que les constantes d’inconditionnalité
complexes et réelles d’'un ensemble A étaient bien différentes; les ensembles & trois éléments ne
fourniront pas de contre-exemple et la question demeure ouverte.

En fait, les problemes extrémaux 15.2 et 15.4 admettent une solution élémentaire : on rameéne le
trinéme trigonométrique a la forme « normale »

rlefikz + 7,2ei'r/(k+l) + Tgeilm (9)
avec k et [ positifs et premiers entre eux et 7 € |—m, 7|. Alors

maxy rle—ikz+r26iT/(k+l)+T3eilz‘ - ‘T1+T2€i7/(k+l) +T3|

r1+ret+7rs ~ r1+ret+rs
_ 4(ry 4+ r3)re sin? T
(r1 + 72 +13)° 2(k +1)
T T
2 1_ in? = )
sin ST COS2(k+l)

et siry:ro:irg=1:k+1:k, letrindme trigonométrique (9) atteint son module maximum en 0 et
satisfait 1 +r3 = ro.
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17 Points extrémaux et points exposés de la boule unité de I’espace C,

Si on cherche a résoudre les problémes extrémaux 15.1, 15.2 et 15.4 par une application de la formule
de Chebotarév (6), il est utile d’obtenir des informations sur les points x tels que « F(t,z) = F*(t), »
c’est-a-dire les points maximum de F'(¢,-) = | f|. Par exemple, on peut déduire de cette formule qu’il y
en a plus d’un car sinon (¢, z) serait un point critique de F'; or un petit calcul (lemme G.3.1 page 95)
montre que ce n’est pas possible.

Voici un argument d’analyse fonctionnelle qui démontre la méme chose. Comme les problémes
ci-dessus sont linéaires, on peut limiter la recherche de polyndmes trigonométriques extrémaux aux
points exposés de la boule unité K de 1’espace Cp (rappelons qu'un point P de K est exposé par un
hyperplan H si H ne coupe K qu’en P.) Pourquoi un point exposé P de K atteint-il son module
maximum en au moins deux points? parce que la forme linéaire qui définit 'hyperplan H s’étend
en une mesure 4 qui atteint sa norme sur P et on sait que P doit étre de module maximum sur le
support de p; la mesure p n’est pas une masse de Dirac puisqu’elle atteint sa norme uniquement en
P, de sorte que le support de p a au moins deux points.

Dans 'article The mazimum modulus of a trigonometric trinomial, nous obtenons une description
trés compléte des points de module maximum d’un trinéme trigonométrique (voir le théoréme H.7.1
page 109) dont voici le point saillant.

Théoréme 17.1. Soit A un ensemble de trois entiers \1 < Ao < A3 tels que Ao — A1 et A3 — Ao soient
premiers entre euz. Soient r1,r9, 13 trois réels strictement positifs. Le trinome trigonométrique

flz) = rlei(tﬁrhr) + T2ei(tz+/\21) + T3ei(t3+x\sm)

atteint son module mazimum en un point unique modulo 2, de multiplicité 2, sauf si son argument
T égale w : Si f atteint son module maximum en deuzr points modulo 27, c’est parce que son graphe
admet un aze de symétrie.

Esquisse de démonstration. On raméne le trindme trigonométrique f & la forme normale (9) avec de
plus 7 € [0, 7] et on montre alors que f doit atteindre son module maximum sur le petit intervalle
[—7/k(k +1),7/l(k +1)] en trouvant, pour tout y hors de cet intervalle, un point  qui y soit pour
lequel |f(z)| = |f(y)|- De plus, on peut rendre cette inégalité stricte sauf si 7 = 7. Il reste alors a
étudier les variations de | f| sur [—7/k(k + 1), 7/1(k + 1)]. O

La formule de Chebotarév donne alors une nouvelle solution pour le probleme extrémal 15.1.

Proposition 17.2. Le module mazimum de r1e ~ %% 4ryel™/ B+ 4 poeile o5t yune fonction strictement
décroissante de T sur [0, 7).

Démonstration. Restons dans le contexte de I'esquisse de démonstration ci-dessus et soit 7 € |0, 7[.
Soit z* l'unique point de module maximum pour f : on a vu que z* € [—7/k(k +1),7/l(k +1)]. Mais
alors

|f(2)]? = r? + 75 + 75 + 2rirg cos((k +1)x) + 2r2(ry cos(r/(k + 1) + kz) + r3 cos(t/(k +1) — lz))

et
k+10|f?
—2:_ gj (") = —rysin(r/(k + 1) + ka*) — rgsin(r/(k +1) — lz") <0
2
car 7/(k+1) + ka* € [0,7/1] et 7/(k +1) — lz* € [0,7/k] ne s’annulent pas simultanémanent. O

Illustrons notre propos : le module maximum de f(z) = 4e ~12% eit ¢ est la distance maximum
de points de I’hypotrochoide d’équation z = 4e ~'2* 4+ e & un point donné —e* du plan complexe.
Nous avons donc montré que si deux points de H sont simultanément & distance maximum de —e'?,
alors —e'! est sur un axe de symétrie de H, c’est-a-dire t = 7/3 mod 27/3.
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Notre étude aboutit au théoréeme suivant, dont on peut espérer une généralisation a des ensembles
A plus grands.

Théoréme 17.3 (page 100). Soit A un ensemble a trois éléments. Soit K la boule unité de ’espace
Cp et soit Pe K.

— Le point P est un point exposé de K si et seulement si P est un mondme trigonométrique
ele quec a € R et A € A ou un trinéme trigonométrique qui atteint son module mazimum,

1, en deuzx points modulo 27 /d. Toute forme linéaire sur Cp atteint sa norme en un point exposé

de K.
— Le point P est un point extrémal de K si et seulement si P est un monome trigonométrique
el guec v € R et A € A ou un trindme trigonométrique tel que 1 — |P|2 a quatre zéros

modulo 21, comptés avec leur multiplicité.

18 La variation du module maximum en fonction de ’argument

Nous utilisons aussi la formule de Chebotarév pour montrer que le module maximum d’un trinéme
trigonométrique est une fonction décroissante de la valeur absolue |7| de son argument (voir (8)) et
pour borner cette décroissance. Nous obtenons les inégalités suivantes.

Théoréme 18.1 (pages 101, 101 et 102). Soit f un trinome trigonométrique comme en (7) et
varions ses arguments de Aty, Ata, Ats. Notons f le trindme qui en résulte, T largument du trindme
f, et A1 la variation de l’argument :

AT = (A3 — X2)Aty + (A — A3) Aty + (A2 — A\)Ats  mod 27Z.
Si|7| > ||, alors
max| f(z)| < max|f(x)
ratrae ™ ] (10)

N -
|r1 —|—r2e17‘/\3—>\1| +r3| x

cos(7/2(A3 — A1) -

= cos(7/2(\3 — Al))mgx|f(z)| (11)
cos((m — |AT])/2(A3 — M) _

s cos(m/2(A3 — A1) m§X|f($)|7 (12)

linégalité (10) est une égalité si et seulement si Ty : r3 = A3 — A2 : Ao — A1, Uinégalité (11) si et
seulement siry i o i3 = A3— A2 1 A3 — A1 1 Ada— Aq et Uinégalité (12) si et seulement si de plus 7 = .
La norme du multiplicateur de Fourier relatif unimodulaire par les signes et eidtz  elAtn gt
donc le facteur dans Uinégalité (12).
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En particulier, le module maximum de f comme fonction de 7 admet les deux minorants |r; +
roel /sl ol et (r) + 7o + 73) cos(7/2(A3 — A1) sur Pintervalle [—m, 71]. Tllustrons-le dans le cas
particulier f(z) = 4e12% 4 !7/3 4 el* .

m

m = max |4e T12% 4 ¢'7/3 4 ei*| —
x

19 Problemes extrémaux pour les quadrindmes trigonométriques

Dans le cas A = {0,1,2,3}, le probléme extrémal 15.4 est un probléme ouvert posé par Harold
S. Shapiro en 1951. Par des moyens heuristiques, nous avons conjecturé que les polyndmes extrémaux
sont de la forme

iQﬁcosu—l—Ssinu+3+sinu iI_}_S—simu 22 i2v/2cosu — 14 3sinu
e e

15 10 10 15

ei3;v

ot u parcourt [0, 2w[. Ces polynémes sont étudiés dans la note On the Sidon constant of {0,1,2,3},
section I.4. On en déduirait que la constante de Sidon de A vaut 5/3, qui est sa constante d’in-
conditionnalité réelle (voir la proposition 1.5.4 page 122.) Il s’agit de le démontrer et d’étudier plus
généralement les polynomes trigonométriques a quatre termes dont le module atteint son maximum
en trois points.
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with Asma Harcharras and Krzysztof Oleszkiewicz.

Abstract

We study unconditional subsequences of the canonical basis (erc) of elementary matrices in
the Schatten class S?. They form the matrix counterpart to Rudin’s A(p) sets of integers in
Fourier analysis. In the case of p an even integer, we find a sufficient condition in terms of
trails on a bipartite graph. We also establish an optimal density condition and present a random
construction of bipartite graphs. As a byproduct, we get a new proof for a theorem of Erdds on
circuits in graphs.

1 Introduction
We study the following question on the Schatten class SP.

() How many matrix coefficients of an operator z € SP must vanish so that the norm of = has a
bounded variation if we change the sign of the remaining nonzero matrix coefficients?

Let C be the set of columns and R be the set of rows for coordinates in the matrix, in general
two copies of N. Let I C R x C be the set of matrix coordinates of the remaining nonzero matrix
coefficients of x. Property () means that the subsequence (erc)(.cjer of the canonical basis of
elementary matrices is an unconditional basic sequence in SP: I forms a o(p) set in the terminology
of [37, §4].

It is natural to wonder about the operator valued case, where the matrix coefficients are themselves
operators in SP. As the proof of our main result carries over to that case, we shall state it in the
more general terms of complete o(p) sets.

We show that for our purpose, a set of matrix entries I C R x C' is best understood as a bipartite
graph. Its two vertex classes are C' and R, whose elements will respectively be termed “column
vertices” and “row vertices”. Its edges join only row vertices r € R with column vertices ¢ € C, this
occurring exactly if (r,c) € I.

We obtain a generic condition for o(p) sets in the case of even p (Theorem 3.2) that generalises
[37, Prop. 6.5]. These sets reveal in fact as a matrix counterpart to Rudin’s A(p) sets and we are
able to transfer Rudin’s proof of [88, Theorem 4.5(b)] to a non-commutative context: his number
rs(E, n) is replaced by the numbers of Def. 2.4(b) and we count trails between given vertices instead
of representations of an integer.

We also establish an upper bound for the intersection of a o(p) set with a finite product set R’ x C”
(Theorem 4.2): this is a matrix counterpart to Rudin’s [88, Theorem 3.5]. In terms of bipartite graphs,
this intersection is the subgraph induced by the vertex subclasses C' C C and R’ C R.

The bound of Theorem 4.2 provides together with Theorem 3.2 a generalisation of a theorem by
Erdds [29, p. 33] on graphs without circuits of a given even length. In the last part of this article, we
present a random construction of maximal o(p) sets for even integers p.

21
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Terminology. C is the set of columns and R is the set of rows, in general both indexed by N. The
set V' of all vertices is their disjoint union RIT C. An edge on V is a pair {v,w} C V. A graph
on V is given by its set of edges E. A bipartite graph on V with vertex classes C' and R has only
edges {r,c} such that ¢ € C and r € R and may therefore be described alternatively by the set
I={(r,c) e RxC:{rc} e E}. A trail of length s in a graph is a sequence (vp,...,vs) of s+ 1

vertices such that {vg,v1},...,{vs—1,vs} are pairwise distinct edges of the graph. A trail is a path
if its vertices are pairwise distinct. A circuit of length p in a graph is a sequence (v1,...,vp) of p
vertices such that {vi,vs},...,{vp—1,vp}, {vp,v1} are pairwise distinct edges of the graph. A circuit

is a cycle if its vertices are pairwise distinct.

Notation. T = {z € C: |z| = 1}. Let ¢ = (r,¢) € R x C. The transpose of ¢ is ¢* = (¢, 7).
The entry (elementary matrix) e; = e, is the operator on ¢, that maps the cth basis vector on
the rth basis vector and all other basis vectors on 0. The matrix coefficient at coordinate g of
an operator ¥ on 3 is x, = tre;x and its matrix representation is (z4)qerxc = quRchqeq.
The Schatten class SP, 1 < p < oo, is the space of those compact operators x on £y such that
|z[|h = tr|z|P = tr(z*x)P/2 < 0o. For I C R x C, the entry space S¥ is the space of those = € SP
whose matrix representation is supported by I: z, = 0 if ¢ ¢ I. S7 is also the closed subspace of S?
spanned by (eq)qer. The SP-valued Schatten class SP(SP) is the space of those operators x from /o
to SP such that ||z[|) = tr(tr|z[P) < co, where the inner trace is the SP-valued analogue of the usual
trace. The SP-valued entry space S7(SP) is the closed subspace spanned by the z,e, with z, € S?
and q € I: z, = trejx is the operator coefficient of x at matrix coordinate ¢. Thus, for even integers
pand & = (Tg)ger = D ;1 Tq€q With 74 € SP and [ finite,

P __ * * * *
l|[|h = g trag g, ... Ty Tg, treg eq, ... e eq.
q1,.--gp€Il

A Schur multiplier T on S} associated to (pq)ser € C! is a bounded operator on S7 such that
Te, = pgeq for ¢ € I. T is furthermore completely bounded (c.b. for short) if T' is bounded as the
operator on S7(SP) defined by T'(x4e4) = pgzqeq for z, € SP and g € 1.

We shall stick to this harmonic analysis type notation; let us nevertheless show how these objects
are termed with tensor products: SP(S?) is also SP ({2 ®3 f2) endowed with ||z||} = tr @ tr [x|P; one
should write z, ® e, instead of z,ey; here z, = Idgr @ tr((Ide, ® e)z); T is c.b. if Ids» ® T' is bounded
on SP(EQ [o=e) EQ)

Acknowledgement. The first-named and last-named authors undertook this research at the Equipe
d’Analyse de I’Université Paris 6. It is their pleasure to acknowledge its kind hospitality.

2 Definitions

We use the notion of unconditionality in order to define the matrix analogue of Rudin’s “commutative”
A(p) sets.

Definition 2.1. Let X be a Banach space. The sequence (y,,) € X is an unconditional basic sequence
in X if there is a constant D such that
X S DHZ n¥n

[

for every real (vs. complex) choice of signs ¥, € {—1,1} (vs. ¥,, € T) and every finitely supported
sequence of scalar coefficients (¢, ). The optimal D is the real (vs. complex) unconditionality constant
of (y,) in X.

X

Real and complex unconditionality are isomorphically equivalent: the complex unconditionality
constant is at most 7/2 times the real one. The notions of unconditionality and multipliers are
intimately connected: we have

Proposition 2.2. Let (y,) C X be an unconditional basic sequence in X and let Y be the closed
subspace of X spanned by (yn). The real (vs. complex) unconditionality constant of (yn) in X is
ezactly the least upper bound for the norms ||T'|| #(yy, where T is the multiplication operator defined
by Tyn = nYn, and the p, range over all real (vs. complex) numbers with |pu,| < 1.
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Let us encompass the notions proposed in Question (7).

Definition 2.3. Let I C R x C' and p > 2.

(a) [37, Def. 4.1] I is a o(p) set if (eq)qer is an unconditional basic sequence in SP. This amounts
to the uniform boundedness of the family of all relative Schur multipliers by signs

Ty: ST — SV, = (xg)qer = Tox = (Vqq)qer with 94 € {—1,1}. (A1)

By [37, Lemma 0.5], this means that there is a constant D such that for every finitely supported
operator « = (Tq)qer = ) c1 Tq€q With 24 € C

D7 ally < llelly < llllp, (A.2)

where the second inequality is a convexity inequality that is always satisfied (see [96, Theo-

rem 8.9]) and
Jells = (3 heel?)” v (% onel?)”. (A3)

(b) [37, Def. 4.4] I is a complete o(p) set if the family of all relative Schur multipliers by signs (A.1)
is uniformly c¢.b. By [37, Lemma 0.5], I is completely o(p) if and only if there is a constant D
such that for every finitely supported operator valued operator z = (z4)qer = > gl Tq€q with

xq €SP
D7 lzllp < llzllp < ll2llp, (A.4)
where the second inequality is a convexity inequality that is always satisfied and
. 1/2\p . 1/2p
bt = 3 () v (S
c T T c

The notion of a complete o(p) set is stronger than that of a o(p) set: Inequality (A.2) amounts
to Inequality (A.4) tested on operators of the type x = qul xqeq With each x4 acting on the same
one-dimensional subspace of £5. It is an important open problem to decide whether the notions differ.
An affirmative answer would solve Pisier’s conjecture about completely bounded Schur multipliers
79, p. 113].

Notorious examples of 1-unconditional basic sequences in all Schatten classes SP are single co-
lumns, single rows, single diagonals and single anti-diagonals — and more generally “column sets”
(vs. “row sets”) I such that for each (r,c¢) € I, no other element of I is in the column ¢ (vs. row r).
These sets are called sections in [100, Def. 4.3]

We shall try to express these notions in terms of trails on bipartite graphs. We proceed as
announced in the Introduction: then each example above is a union of disjoint star graphs in which
one vertex of one class is connected to some vertices of the other class: trails in a star graph have at
most length 2.

Definition 2.4. Let ] C R x C and s > 1 an integer. We consider I as a bipartite graph: its vertex
set is V = RII C and its edge set is E = { {r,c} CV : (r,c) € I }.
(a) The sets of trails of length s on the graph I from the column (vs. row) vertex vy to the vertex
vs are respectively
E5(I;00,v5) = { (V0 ..., vs) € VT iy € C & all {v;,v;41} € E are distinct },
F*(I;00,v5) = { (v, -+, vs) € VT iy € R & all {v;,v;41} € E are distinct }.
(b) We define the Rudin numbers of trails starting respectively with a column vertex and a row
vertex by Cs(I; V0, Vs) = #(gs([; Vo, Us) and rs(I; V0, Vs) = #%S(I; V0, Vs ).

Remark 2.5. In other words, for an integer [ > 1,

(7"1, Cl)a (7"1, CQ)a (T2a CQ)a (T2a C3)a sy (Tla Cl)
pairwise distinct in I : ¢y = vg,r; = v91—1

ca—1(L;v0,v21-1) = #[

car(I5v0,v27)

” [(7’1,01),(7’1,02),...,(Tl,cl),(rl,cl+1) ]

pairwise distinct in [ : ¢; = vg, cj4+1 = vy

and similarly for r5(I;vg,vs). If s is odd, then ¢(I;vg, vs) = 75(I;vs,v9) for all (vo,vs) € C x R. But
if s is even, one Rudin number may be bounded while the other is infinite: see [37, Rem. 6.4(ii)].
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3 o(p) sets as matrix A(p) sets

We claim the following result.

Theorem 3.1. Let I C R x C and p = 2s be an even integer. If I is a union of sets I, ..., I; such
that one of the Rudin numbers cs(1;;v0,vs) or rs(1;;v0,vs) is a bounded function of (vo,vs), for each
J, then I is a complete o(p) set.

This follows from Theorem 3.2 below: the union of two complete o(p) sets is a complete o(p) set
by [37, Rem. after Def. 4.4]; furthermore the transposed set I* = {¢*: g € I} C C' x R is a complete
o(p) set provided I is. Note that the case of o(0c0) sets (see [37, Rem. 4.6(i4i)]) provides evidence
that Theorem 3.1 might be a characterisation of complete o(p) sets for even p.

Theorem 3.2. Let I C R x C and p = 2s be an even integer. If the Rudin number cs(I;vg,vs) is a
bounded function of (vo,vs), then I is a complete o(p) set.

This is proved for p = 4 in [37, Prop. 6.5]. We wish to emphasise that the proof below follows
the scheme of the proof of [37, Theorem 1.13]. In particular, we make crucial use of Pisier’s idea to
express repetitions by dependent Rademacher variables ([37, Prop. 1.14]).

Proof. Let v =3 ;x4eq With 24 € SP. We have the following expression for ||z|,.

s terms
z]|h = tr@tr(z*z)® = = |lyllz with y=az*za*- -2,

i.e., y is the product of s terms which are alternatively z* and z, and we set z® = z for even s,
x® = z* for odd s. Set C® = C for even s and C® = R for odd s. Let (vg,vs) € C x C® and
Yugv, = tr ey, y be the matrix coefficient of y at coordinate (vo,vs). Then we obtain by the rule of
matrix multiplication

Yy= Z (qu eq1>(xq2eq2>" (:Cl(;;) ‘(;2)

— * * )
Yoovs = E TwoTorvaToguy Ly e (A.5)
(v1,v0), (v1,v2),... €

Let & be the set of equivalence relations on {1,...,s}. Then

1= Y @hel) e @) (A6)
~EE I~ jSqi=q;
We shall bound the sum above in two steps.

(a) Let ~ be equality and consider the corresponding term in the sum (A.6). The number of terms
in the sum (A.5) such that {v;—1,v;} # {vj_1,v,;} if i # j is ¢s(L;v0,vs). If ¢ is an upper bound for
¢s(I;v0,vs), we have by the expression of the Hilbert—Schmidt norm and the Arithmetic-Quadratic
Mean Inequality

2
| Y G @nen) . @ge)

q1;---, qs 2
pairwise distinct

2
= E * * (*)
B Z H LvrvgTviveTogug - Ly, 1,05)® ||
(v0,vs)ECXC® VEE® (I;v0,v5)
E (k) 2
* * «
s ¢ Z ’xvlvozvlmxvsw" Tlvgo1,v0)® 2
(v0,v5) EC'XC® vEEG® (I;00,v5)
2
= [OPNC]
= ¢ Z H lh th $q2€q2)..-($qseqs)‘2
q1,---,4s
pairwise distinct
2
[OPNC
< e Y @ e (@g,eq) . (@Pe?)]];
q1;.-qs
= (*) (*)
= c‘ Z [(5, e0,)(Tgreq,) - - (25 )| H
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Now this last expression may be bounded accordingly to [37, Cor. 0.9] by

([ @en @)

see [37, Lemma 0.5] for the last equality.
(b) Let ~ be distinct from equality. The corresponding term in the sum (A.6) cannot be bounded
directly. Consider instead

Y HZ(:quq)(xZeZ)HS)S = clJa|l? : (A7)

o= T @heenen) @) = T L@

o o . 2
IN)=qi=4qj i~vj=qi=q; i=1

with fi(q) = w4eq for even i and fi(q) = zje; for odd i. We may now apply Pisier’s Lemma [37,
Prop. 1.14]: let 0 < 7 < s — 2 be the number of one element equivalence classes modulo ~; then

U(~) < 2l (Bllllp)™" (A.8)

where B is the constant arising in Lust-Piquard’s non-commutative Khinchin inequality. In order to
finish the proof, one does an induction on the number of atoms of the partition induced by ~, along
the lines of step 2 of the proof of [37, Theorem 1.13]. O

The Moebius inversion formula for partitions enabled Pisier [78] to obtain the following explicit
bounds in the computation above:

ol < Plely 30 ()= el (@n/a)lel,)

o<r<s—2

lzllp < ((4)"/7 v 97p/8) ]l (A.9)

Let us also record the following consequence of his study of p-orthogonal sums. The family (z4eq)qer
is p-orthogonal in the sense of [78] if and only if the graph associated to I does not contain any circuit
of length p, so that we have by [78, Theorem 3.1]:

Theorem 3.3. Let p > 4 be an even integer. If I does not contain any circuit of length p, then I is
a complete o(p) set with constant at most 3wp/2.

Remark 3.4. Pisier proposed to us the following argument to deduce a weaker version of Theorem 3.2
from [37, Theorem 1.13]. Let I' = TV and 2, denote the vth coordinate function on I'. Associate to
I the set A = {zy2.: (r,¢) € I}. Let still p = 2s be an even integer. Then I is a complete o(p) set
if A is a complete A(p) set as defined in [37, Def. 1.5], which in turn holds if A has property Z(s) as
given in [37, Def. 1.11]. It turns out that this condition implies the uniform boundedness of

ct(I;vp,ve) V re(L;vg,01)  for t < s, vg, v € V.

For p > 8, this implication is strict: in fact, the countable union of disjoint cycles of length 4
(“quadrilaterals”)

I= U,>O{(2i,2i), (20,2i+ 1), (20 + 1,20 + 1), (20 + 1,24) }

satisfies ¢;(1;v0,v:) V ri(I;v9,v:) < 2 whereas A does not satisfy Z(s) for any s > 4.

Remark 3.5. Theorem 3.1 is especially useful to construct c¢.b. Schur multipliers: by [37, Rem. 4.6(i7)],
if I is a complete o(p) set, there is a constant D (the constant D in (A.4)) such that for every sequence
(114) € CB*C supported by I and every operator T}, : (z4) — (474) we have

| Tull 2 (sp(spy) < Dsup |pgl-
qel
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4 The intersection of a o(p) set with a finite product set

Let I C R x C considered as a bipartite graph as in the Introduction and let I’ C I be the subgraph
induced by the vertex set C'II R’, with C’ C C' a set of m column vertices and R’ C R a set of n row
vertices. In other words, I’ = I N R’ x C’. Let d(v) be the degree of the vertex v € C'II R in I': in
other words,

Vee C' d(c) = #[I'N R x {c}],

Vre R d(r)=#[I'n{r} xC'].

Let us recall that the dual norm of (A.3) is
) p’/2 /v p'/2 1/p'
fa = (S (S anl?)™) "+ (S 0r))

a,BeSP
a+B=x

where p > 2 and 1/p+ 1/p’ =1 (see [37, Rem. after Lemma 0.5]).

Lemma 4.1. Let 1 <p' <2 and z = qup xq. Then

/

' 1/2—1/p’ p
lally) > 7 3" (max(d(e),d(r) > farel)
(rye)el’
Proof. By the p’-Quadratic Mean Inequality and by Minkowski’s Inequality,

(S( % o)’ N2 (s )"

ceC’ (r,e)el’ reRr’ (rc yer’

(Zd(c)z)'/2—1 Z |are|” ) (Zd p/2 1 Z |ﬁm|p1)1/p’

ceC’ (r,c)el’ reR’ (r,c)el’
> (ST el ) 5 )
(r,c)el’

The lemma follows by taking the infimum over all «, 8 with a, + 8, = x4 for ¢ € I’ as one can
suppose that ag = 8, = 0 if ¢ ¢ I; note further that 1/2 —1/p’ <0. O

Theorem 4.2. If I is a o(p) set with constant D as in (A.2), then the size #I' of any subgraph
I’ induced by m column vertices and n Tow vertices, in other words the cardinal of any subset I' =
INR x C" with #C' = m and #R' = n, satisfies

D? (ml/pn1/2 + ml/in/p)2 (A.10)

4D?min(m,n)?/? max(m,n).

#I' <
<

The exponents in this inequality are optimal even for a complete o(p) set I in the following cases:
(a) if m orn is fized;
(b) if p is an even integer and m = n.

Bound (A.10) holds a fortiori if I is a complete o(p) set. Density conditions thus do not so far
permit to distinguish o(p) sets and complete o(p) sets. One may conjecture that Inequality (A.10) is
also optimal for p not an even integer and m = n: this would be a matrix counterpart to Bourgain’s
theorem [14] on maximal A(p) sets.

Proof. If (A.2) holds, then ||z|1/ ||, < D|z|, for all z € S? by Remark 3.5 applied to (14) the indicator
function of I’, and by duality ||z|r |, < D|z|, for all z € SP" (compare with [37, Rem. 4.6(iv)]).
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Let
Y= Z Z d(c)l/p/_1/2eT0a
(r,c)el’
z= Z Z d(r)l/p/_1/2em,
(r,c)el’

Then the n rows of y are all equal, as well as the m columns of z: y and 2z have rank 1 and a single
singular value. By the norm inequality followed by the (2/p" — 1)-Arithmetic Mean Inequality,

ly+ 2l < Myl + 112l
/ 1/2 , 1/2
_ n1/2(z d(c)2/p —1) +m1/2(z d(T)Q/p —1)
ceC’ reR’
< n1/2m171/p’(#1/)1/p’71/2 +m1/2n171/p’(#1/)1/;9’71/2.

We used that } . d(c) =), cp d(r) = #I'. By Lemma 4.1 applied to 2 =y + 2,
(#Il)l/p/ < D(n1/2m1—1/p’ +m1/2n1—1/p/)(#Il)l/p/—l/Q,

and we get therefore the first part of the theorem.

Let us show optimality in the given cases.

(a) Suppose that n is fixed and ¢’ = C: I' = R’ x C is a complete o(p) set for any p as a union
of n rows and #I' = n-m.

(b) is proved in [37, Theorem 4.8]. O

Remark 4.3. If n ~ m, the method used in [37, Theorem 4.8] does not provide optimal o(p) sets but
the following lower bound. Let p = 2s with s > 2 an integer. Consider a prime g and let k = s°~1¢®.
By [88, 4.7] and [37, Theorem 2.5], there is a subset ' C {0,...,k — 1} with ¢ elements whose
complete A(2s) constant is independent of g. Let m > k and 0 < n < m and consider the Hankel set

I={(r,0)e{0,....n =1} x{0,....m—1}:r+ce F+m—k}.

Then the complete o(p) constant of I is independent of ¢ by [37, Prop. 4.7] and

Sl ng ifn
(m—k+1)q ifn

m—k+1
m—k+ 1.

VoA

If we choose m = (s + 1)k — 1, this yields
S1/5

m min(n, m) max(m, n)l/s.

#1I >

Random construction 6.1 provides bigger sets than this deterministic construction; however, it also
does not provide sets that would show the optimality of Inequality (A.10) unless s = 2.

5 Circuits in graphs

Non-commutative methods yield a new proof to a theorem of Erdds [29, p. 33]. Note that its gene-
ralisation by Bondy and Simonovits [12] is stronger than Theorem 5.1 below as it deals with cycles
instead of circuits. By Theorem 3.3 and (A.10)

Theorem 5.1. Let p > 4 be an even integer. If G is a nonempty graph on v vertices with e edges
without circuit of length p, then
e < 18m2p2 v H2/P,

If G is furthermore a bipartite graph whose two vertex classes have respectively m and n elements,
then

e < 9r%p? min(m,n)Q/p max(m,n). (A.11)
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Proof. For the first assertion, recall that a graph G with e edges contains a bipartite subgraph with
more than e/2 edges (see [11, p. xvii]). O

Remark 5.2. Luczak showed to us that (A.11) cannot be optimal if m and n are of very different
order of magnitude. In particular, let p be a multiple of 4. Let ¢’ be the maximal number of edges of
a graph on n vertices without circuit of length p/2. If m > pe’, he shows that (A.11) may be replaced
by e < 3m.

We also get the following result, which enables us to conjecture a generalisation of the theorems
of Erd6s and Bondy and Simonovits.

Theorem 5.3. Let G be a nonempty graph on v vertices with e edges. Let s > 2 be an integer.

(1) If
e>8D? v/ with D > 9rs /4,

then one may choose two vertices vo and vs such that G contains more than D* /4 pairwise distinct
trails from vg to vs, each of length s and with pairwise distinct edges.

(i1) One may draw the same conclusion if G is a bipartite graph whose two vertex classes have
respectively m and n elements and

e > 4D%min(m, n)Y* max(m,n) with D > 97s/4.

Proof. (i) According to [11, p. xvii], the graph G contains a bipartite subgraph with more than e/2
edges, so that we may apply ().

(#4) Combining inequalities (A.9) and (A.10), if D > 9ms/4, then there are vertices vy and v, such
that the number ¢ of pairwise distinct trails from vy to v, each of length s and with pairwise distinct
edges, satisfies (4¢)'/?* > D. O

Two paths with equal endvertices are called independent if they have only their endvertices in
common.

Question 5.4. Let G be a graph on v vertices with e edges. Let s,l > 2 be integers. Is it so that there
is a constant D such that if e > Dv'*/* then G contains [ pairwise independent paths of length s
with equal endvertices?
Remark 5.5. Note that by Theorem 4.2, the exponent 1+ 1/s is optimal in Theorem 5.3(¢), whereas
optimality of the exponent 1+ 2/p in Theorem 5.1 is an important open question in Graph Theory
(see [49]).

One may also formulate Theorem 5.3(i%) in the following way.

Theorem 5.6. If a bipartite graph G2(n, m) with n and m vertices in its two classes avoids any union
of ¢ pairwise distinct trails along s pairwise distinct edges between two given vertices as a subgraph,
where the class of the first vertex is fized, then the size e of the graph satisfies

e < 4max((4¢)Y/?, 9rs/4)) min(m, n)'/* max(m, n).

6 A random construction of graphs

Let us precise our construction of a random graph.

Random construction 6.1. Let C, R be two sets such that #C = m and #R =n. Let 0 < a < 1.
A random bipartite graph on V. = C 11 R is defined by selecting independently each edge in E =
{ {r,c} CV :(r,c) € Rx C’} with the same probability «. The resulting random edge set is denoted
by E' CE and I' C R x C denotes the associated random subset.

Our aim is to construct large sets while keeping down the Rudin number c;.

Theorem 6.2. For each € > 0 and for each integer s > 2, there is an « such that Random construc-
tion 6.1 yields subsets I' C R x C with size

1/241/s 1/2—e

#I' ~ min(m,n) max(m,n)

and with o(2s) constant independent of m and n for mn — oo.
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Proof. Let us suppose without loss of generality that m > n. We want to estimate the Rudin number
of trails in I’. Set C® = C for even s, C® = R for odd s and let (vg,vs) € C x C®. Let [ > 1 be a
fixed integer. Then

Ples(I';v0,vs) = 1] = P[3 1 distinct trails (v), .,’Ug) in €°(I'; v, vs)]
]P’E'D{{vl 1s Z}}”. ...,’Ug)}é-:lQ%S(Rxc;vo,vs)]
Z #Ak Oé
k=[11/2]

where Ay, is the following set of l-element subsets of trails in €*(R x C;wvg, vs) built with k pairwise
distinct edges

Ak:{{(vé,...,vg) é-:lg%S(RxC;vo,vé #{{Uz 1 Z}}”— },

the lower limit of summation is [1'/*] because one can build at most k* pairwise distinct trails of
length s with k pairwise distinct edges.
In order to estimate # Ay, we now have to bound the number of pairwise distinct vertices and the

number of pairwise distinct column vertices in each set of I trails {(v], ..., v]) L, € Ap. We claim
that

#{’U 1<i<s 71;1<]<l} < k(S*l)/S, (A12)

#{v], :1<i<[s/2] - 1,1<j <1} < k)2 (A.13)

The second estimate is trivial, because each column vertex vé accounts for two distinct edges
{vd,_, v} and {v], v, 41} For the first estlmate note that each maximal sequence of h conse-
cutive pairwise distinct vertices (v f1ree o Ugy 7 .1,) accounts for h + 1 pairwise distinct edges

{Uga Ui+1}a {Ui-i-la Ui+2}a R {UiJrh’ Ui+h+1}?
ash<s—1 h+12>hs/(s—1). By (A.12) and (A.13),
#Ak < mk/an/Q—k/s(k _ k/s)ls—l < (ls)lsmk/an/Q—k/s .

each element of Ay is obtained by a choice of at most k — k/s vertices, of which at most k/2 are
column vertices, and the choice of an arrangement with repetitions of Is — I out of at most k — k/s
vertices.

Put a = m='/2n=1/2+Vs(#C . #C®)~=. Then

ls

P[ sup cs(I'5v0,vs) =1 < #C-#C9 . (ls)lS Z (#C - #C(”‘))JCE

(vo,vs) k=[11/%]
@\1—[1Y%]e
1- (#C #CO W)~
Choose [ such that [I'/*]e > 1. Then this probability is little for mn large. On the other hand, #I’
is of order mna with probability close to 1. O

Remark 6.3. This construction yields much better results for s = 2. Keeping the notation of the
proof above and m > n, we get k = 2I, Ay = (7) and

P[  sup ca(I';v0,v9) = 1] < m? (n) a?t,
(vo,v2)ECXC l

Let [ > 2 and o = m~Y/!'n=1/2, This yields sets I’ C R x C with size

41 ~ /2 1-1/1
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and with o(4) constant independent of m and n. This case has been extensively studied in Graph
theory as the “Zarankiewicz problem:” if co(I’;vg,v2) < 1 for all vy, vy € C, then the graph I’ does
not contain a complete bipartite subgraph on any two column vertices vy, vo and [ 4+ 1 row vertices.
Reiman (see [11, Theorem VI.2.6]) showed that then

#I' < (Inm(m — 1) + n2/4)1/2 +n/2 ~ 1Y 20 2,
With use of finite projective geometries, he also showed that this bound is optimal for

n:lqr-l-l_lqr_l m:qr-i-l_l
¢>—1 ¢—1 "~ qg—1

with ¢ a prime power and r > 2 an integer, and thus with m < n: there seems to be no constructive
example of extremal graphs with co(I’;v9,v2) < I and m > n besides the trivial case of complete
bipartite graphs with m >n=1—1.

Remark 6.4. In the case s = 3, our result cannot be improved just by refining the estimation of # Ay.
If we consider first [ distinct paths that have their second vertex in common and then ! independent

paths, we get
m m\ (n
#A21+1>(l)n ; #A3z>(l)(l)-

Therefore any choice of « as a monomial m~tn~% in the proof above must satisfy ¢ > (I+1)/(21+ 1),
t+wu > (20 +2)/(3l) and this yields sets with

41 < m1/2—1/2(4l+2)n5/6—(7l+6)/(12l2+6l)_



Cycles and 1-unconditional matrices

Abstract

We characterise the 1-unconditional subsets (erc)(rc)er of the set of elementary matrices in the
Schatten-von-Neumann class S?. The set of couples I must be the set of edges of a bipartite
graph without cycles of even length 4 < p if p is an even integer, and without cycles at all if p is a
positive real number that is not an even integer. In the latter case, I is even a Varopoulos set of
V-interpolation of constant 1. We also study the metric unconditional approximation property
for the space S} spanned by (erc)(rc)er in SP.

1 Introduction

The starting point for this investigation has been the following isometric question on the Schatten-
von-Neumann class SP.

Question 1.1. Which matrix coefficients of an operator x € SP must vanish so that the norm of x
does not depend on the argument, or on the sign, of the remaining nonzero matrix coefficients?

Let C be the set of columns and R be the set of rows for coordinates in the matrix. Let I C Rx C
be the set of matrix coordinates of the nonzero matrix coeflicients of = (the pattern.) Question 1.1
describes the notion of a complex, or real, 1-unconditional basic sequence (e,c)(,c)er of elementary
matrices in SP (see Definition 4.1.)

By a convexity argument, Question 1.1 is equivalent to the following question on Schur multipli-
cation.

Question 1.2. Which matrix coefficients of an operator € SP must vanish so that for all matrices ¢
of complex, or real, numbers

I * 2|| < sup [@re| [|z]],

where ¢ * x is the Schur (or Hadamard or entrywise) product defined by

(90 * z)rc = @rcxrc?

In the case p = oo, Grothendieck’s inequality yields an estimation for the norm of Schur mul-
A
tiplication by ¢ in terms of the projective tensor product £ ® % this norm is equivalent to the
A
supremum of the norm of those elements of /¥ ® £% whose coefficient matrices are finite submatrices
of . In the framework of tensor algebras over discrete spaces, Question 1.2 turns out to describe as

well the isometric counterpart to Varopoulos’ V-Sidon sets as well as to his sets of V-interpolation.
The following isometric question has however a different answer.

A
Question 1.3. Which coefficients of a tensor u € £ ® (% must vanish so that the norm of u is the
maximal modulus of its coefficients?

In our answer to Question 1.2, SP and Schur multiplication are treated as a noncommutative
analogue to L? and convolution. The main step is a careful study of the Schatten-von-Neumann

1 . . T . .
norm |[|z|| = (tr(z*z)P/?) /P for p an even integer. The rule of matrix multiplication provides an
expression for this norm as a series in the matrix coefficients of x and their complex conjugate,

31
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indexed by the puples (v1,va, ..., vp,) satisfying (va;—1,v2:), (Vai41,v2:) € I, where v,11 = v1: see the
computation in Eq. (B.10). These are best understood as closed walks of length p on the bipartite
graph G canonically associated to I: its vertex classes are C' and R and its edges are given by the
couples in I. A structure theorem for closed walks and a detailed study of the particular case in
which G is a cycle yield the two following theorems that answer Questions 1.1 and 1.2.

Theorem 1.4. Let p € (0,00] \ {2,4,6,...}. If the sequence of elementary matrices (erc)(rcyer 5 @
real 1-unconditional basic sequence in SP, then the graph G associated to I contains no cycle. In this
case, I is even a set of V-interpolation with constant 1: every sequence ¢ € £3° may be interpolated

A
by a tensor u € £ @ LY such that ||ul| = ||¢]|.

Theorem 1.5. Letp € {2,4,6,...}. The sequence (€,c)(rc)er s a complex, or real, 1-unconditional
basic sequence in SP if and only if G contains no cycle of length 4,6, ..., p.

These theorems hold also for the complete counterparts to 1-unconditional basic sequences in the
sense of Def. 4.1(c).

In particular, if we denote by U, the property that (e;.),c)er is a 1-unconditional basic sequence
in SP, then we obtain the following hierarchy:

U, forape (0,00 \{2,4,6,...} = -+ = Ugyya = Uy, = -+ = Usy.

If C and R are finite, extremal graphs without cycles of given lengths remain an ongoing area of
research in graph theory. Finite geometries seem to provide all known examples of such graphs when
C and R become large. Proposition 11.6 and Remark 11.7 gather up known facts on this issue.

One may also avoid the terminology of graph theory and give an answer in terms of polygons drawn
in a matrix by joining matrix coordinates with sides that follow alternately the row (horizontal) and
the column (vertical) direction of the matrix:

— Suppose that p is not an even integer. If a pattern I contains the vertices of such a polygon,
then there is an operator x € SP whose matrix coefficients vanish outside I and whose norm
depends on the sign of its matrix coefficients. This condition is also necessary.

— If matrix coordinates of nonzero matrix coefficients of x are the vertices of such a polygon with
n sides, then the norm of x in SP depends on the argument of its matrix coefficients for every
even integer p > n; if the matrix coefficients of x are real, then the norm of = even depends on
the sign of its matrix coefficients. These conditions are also necessary.

An elementary example is given by the set
I={(r,c) €Z)TLXL)TZ 1+ c € {0,1,3}}. (B.1)

The associated bipartite graph is known as the Heawood graph (Fig. B.1:) it is the incidence graph
of the Fano plane (the finite projective plane PG(2,2),) which is the smallest generalised triangle,
and corresponds to the Steiner system S(2,3;7). It contains no cycle of length 4, but every pair of
vertices is contained in a cycle of length 6.

5 5

Figure B.1: The Heawood graph
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Thus the p-trace norm of every matrix with pattern

—

o A W N = O
O OO * O % % O
*¥ O OO % O *

* ¥ OO O ¥ O W
O % ¥ OO O ¥ w
*¥ O *¥ ¥ OO O B
O % O % % OO «»
OO ¥ O % ¥ © o

does not depend on the sign of its coefficients if and only if p € {2,4}.

These results give a complete description of the situation in which (e,c)(rc)er is a 1-uncondi-
tional basis of the space S} it spans in SP. If this is not the case, S} might still admit some other
1-unconditional basis. This leads to the following more general question.

Question 1.6. For which sets I does S admit some kind of almost 1-unconditional finite dimensional
expansion of the identity?

The metric unconditional approximation property (muap) provides a formal definition for the
object of Question 1.6: see Def. 10.1. We obtain the following results.

Theorem 1.7. Let p € [1,00] \ {2,4,6,...}. If S} has real (muap), then the distance of any two
vertices that are not in the same vertex class is asymptotically infinite in G: their distance becomes
arbitrarily large by deleting a finite number of edges from G.

Theorem 1.8. Let p € {2,4,6,...}. The space S} has complez, or real, (muap) if and only if any
two vertices at distance 25 +1 < p/2 are asymptotically at distance at least p — 25 + 1.

We now turn to a detailed description of this article. In Section 2, we provide tools for the
computation of Schur multiplier norms. Section 3 characterises idempotent Schur multipliers and

0, 1-tensors in £ Q%fj’;? of norm 1. In Section 4, we define the complex and real unconditional
constants of basic sequences of elementary matrices and show that they are not equal in general.
Section 5 looks back on Varopoulos’ results about tensor algebras over discrete spaces. Section 6 puts
the connection between p-trace norm and closed walks of length p in the concrete form of closed walk
relations. In Section 7, we compute the norm of relative Schur multipliers by signs in the case that G
is a cycle, and estimate the corresponding unconditional constants. Section 8 is dedicated to a proof
of Th. 1.4 and an answer to Question 1.3. Section 9 establishes Th. 1.5. In Section 10, we study the
metric unconditional approximation property for spaces S4. The final section provides four kinds of
examples: sets obtained by a transfer of n-independent subsets of a discrete abelian group, Hankel
sets, Steiner systems and Tits” generalised polygons.

Terminology. C is the set of columns and R is the set of rows, both finite or countable and if
necessary indexed by natural numbers. V', the set of vertices, is their disjoint union C'II R: if there
is a risk of confusion, an element n € V that is a column (vs. a row) will be referred to as “col n”
(vs. “row n”.) An edge on V is a pair {v,w} C V. A graph on V is given by a set of edges E. A
bipartite graph on V with vertex classes C and R has only edges {r,c} such that ¢ € C and r € R
and may therefore be given alternatively by the set of couples I = {(r,c) € Rx C: {r,c} € E}: this
will be our custom throughout the article. A bipartite graph on V is complete if its set of couples
I is the whole of R x C. Two graphs are disjoint if so are the sets of vertices of their edges. I is a
column section if (r,c), (r',¢) € I = r =71/, and a row section if (r,c),(r,d/) € [ =c=¢.

A walk of length s > 0 in a graph is a sequence (vy,...,vs) of s + 1 vertices such that {vg,v1},
.oy {vs—1,vs} are edges of the graph. A walk is a path if its vertices are pairwise distinct. The
distance of two vertices in a graph is the minimal length of a path in the graph that joins the two
vertices; it is infinite if no such path exists. A closed walk of length p > 0 in a graph is a sequence
(v1,...,vp) of p vertices such that {v1,ve},...,{vp—1,vp},{vp,v1} are edges of the graph. Note that
p is necessarily even if the graph is bipartite. A closed walk is a cycle if its vertices are pairwise
distinct. We take the convention that if a closed walk in a bipartite graph on V' = CII R is nonempty,
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then its first vertex is a column vertex: v; € C. We shall identify a path and a cycle with its set of
edges {r, ¢} or the corresponding set of couples (r, ¢).

A bipartite graph on V' is a tree if there is exactly one path between any two of its vertices. In this
case, its vertices may be indexed by finite words over its set of vertices in the following way. Choose
any row vertex 7 as root and index it by §). If v is a vertex and (r,c,...,v) is the unique path from r
to v, let the word ¢™ --- "v index v. Let W be the set of all words thus formed. Then

— () € W and every beginning of a word in W is also in W: if w € W \ {0}, then w is the
concatenation w’' v of a word w’ € W with a letter v;

— words of even length index row vertices;
— words of odd length index column vertices;

— a pair of vertices is an edge exactly if their indices have the form w and w™ v, where w is a word
and v is a letter.

A forest is a union of pairwise disjoint trees; equivalently, it is a cycle free graph.

Notation. Let T={z € C: |z| = 1}.

The unit ball of a Banach space X is denoted by Bx.

Given an index set I and q € I, e, is the sequence defined on [ as the indicator function x4y of
the singleton {q}.

Let I = R x C and ¢ = (r,¢). Then e, = e,. is the elementary matriz identified with the
operator from ¢%, to (% that maps e. on e, and all other basis vectors on 0. The matriz coefficient
at coordinate g of an operator z from (2, to (% is x, = trejz and its matriz representation is
(Tq)gerxC = D_yerxc Tq€q- The support of z is {g € R x C : x4 # 0}

The Schatten-von-Neumann class SP, 0 < p < 00, is the space of those compact operators x from
3 to (% such that [|z]|p = tr|z[P = tr(z*z)P/? < co. S™ is the space of compact operators with the
operator norm. SP is a quasi-normed space, and a Banach space if p > 1. Let (R, x Cp)n>0 be a
sequence of finite sets that tends to R x C. Then the sequence of operators P, : x — quRnan Tg€q
tends pointwise to the identity on SP if p > 1.

For I C R x C, the entry space S is the subspace of those z € SP whose support is a subset of I.
S is also the closed subspace of SP spanned by (eq)qer-

The SP-valued Schatten-von-Neumann class SP(SP) is the space of those compact operators x from
(% to £3(SP) such that ||z|[p = tr(tr|z|?) < oo, where the inner trace is the SP-valued analogue of
the usual trace: such operators have an SP-valued matrix representation and their support is defined
as in the scalar case. An element 2 € SP(SP) can also be considered as a compact operator from
03,(l2) = Uy @3 L3, to }(Ly) = Ly ®o (3, such that [|z]|) = tr @ tr|2[? < oo; the matrix coefficient of
z at g is then x4, = (Idgr ® tr)((Idg, ® e;‘)z) and its matrix representation is » - . p. o Tq ® €4. The
entry space S7(SP) is defined in the same way as S%.

A relative Schur multiplier on S¥ is a sequence ¢ = (pq)qer € C! such that the associated Schur
multiplication operator M, defined by e, — ¢g4e, for g € I is bounded on S}. The Schur multiplier
¢ is furthermore completely bounded (c.b. for short) on S7 if Idgr ® M,,, the operator defined by
Tgeq — Pglgeq for x4 € SP and ¢ € I, is bounded on SP(SP) (see [77, Lemma 1.7].) The norm of
¢ is the norm of M, and its complete norm is the norm of Idss ® M,,. This norm is the supremum
of the norm of its restrictions to finite rectangle sets R’ x C’. Note that ¢ is a Schur multiplier on
S* if and only if, for every bounded operator z: {Z — (%, (pq,) is the matrix representation of a
bounded operator; also ¢ is automatically ¢.b. on S [79, Th. 5.1]. We used [77, 79] as a reference.

Let G be a compact abelian group endowed with its normalised Haar measure. Let I' = G be the
dual group of characters on G. The spectrum of an integrable function f on G is {y € T": f(y) # 0}.
Let A CT. If X is a space of integrable functions on G, then X, is the translation invariant subspace
of those f € X whose spectrum is a subset of A.

Let X be the space of continuous functions C(G) or the Lebesgue space LP(G) with 0 < p < oo.
Then X, is also the closed subspace of X spanned by A. A relative Fourier multiplier on X, is a
sequence [t = (fby)ver € C? such that the associated convolution operator M,, defined by v — py
for v € A is bounded on X,. The Fourier multiplier p is furthermore c.b. if Idsr ® M, the operator
defined by a7y +— pya,y for a, € SP and v € A, is bounded on the SP-valued space X (SP) (where
p = oo if X = C(G).) The norm of p is the norm of M,, and its complete norm is the norm of
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Ids» ® M,,. Note that p is a Fourier multiplier on Cx(G) if and only if, for every f € L(G),
S 11y f(7)7 is the Fourier series of an element of L (G): p is a relative Fourier multiplier on L®°(G);
also p is automatically c.b. on CA(G) [79, Cor. 3.18].

Let X,Y be Banach spaces and u € X ® Y. Its projective tensor norm is

n n
lal g, = {3 sl 0= Y-y 3}
j=1 j=1

A A A
and X ®Y is the completion of X ® Y with respect to this norm. Note that {7 ® {2 C co®co

A A
because ¢7 and {7} are 1-complemented in cg, and that co ® cg C oo ® oo because £, is the bidual
of cg.

Let )" x; ® y; be any representation of the tensor u. If £ ®@n € X* @ Y™*, we define ({ @ n,u) =
> (&, xj)(n,y;). The injective tensor norm of w is

full v = sup (€ @n,u)l
XY (§,m)EBx+ X Byx

\%
and X ®Y is the completion of X ® Y with respect to this norm.
If X and Y are both finite dimensional, then

(X©Y) =X"8Y* and (XBY) =X 0V

Ak v A
Further (co ® co) = /{1 ®{1: in fact, (co ® co) . may be identified with the space of bounded operators

from cg to ¢1 and ¢; Q\éfl may be identified with the closure of finite rank operators in that space,
and they are the same because every bounded operator from cg to ¢; is compact and ¢; has the
approximation property.

If X is a sequence space on C' and Y is a sequence space on R, then the coefficient of the tensor
wat (r,c) is {e. ® e,,u). Its support is the set of coordinates (r,c¢) of its nonvanishing coefficients.
One may use [90] as a reference.

2 Relative Schur multipliers

The following proposition is a straightforward consequence of [72].

Proposition 2.1. Let I C R x C' and ¢ be a Schur multiplier on S¢° with norm D. Then ¢ is also
a c.b. Schur multiplier on S} for every p € (0, 00], with complete norm bounded by D.

Proof. We may assume that D = 1. Let R’ x C’ be any finite subset of R x C. By [72, Th. 3.2],
there exist vectors w,. and v, of norm at most 1 in a Hilbert space H such that ¢,. = (we,v,) for
every (r,c) € INR x C'. If we define W: (2, — (%,(H) and V: (%, — (%,(H) by W( = ((cwe)eecr
and Vn = (n,v:)rer, then ¥V and W have norm at most 1, and the proposition follows from the
factorisation

Myz =V*(z @ Idg)W

for every x with support in I N R’ x C". O
Remark 2.2. Eric Ricard showed us an elementary proof that a Schur multiplier on S%° is automatically

c.b., included here by his kind permission. A Schur multiplier ¢ is bounded on S¢° by a constant D
if and only if

Z 777‘ (p’I‘CETCgC

(r,e)el

Vf S BS?O V?’] S BZ?% VC S BZQC < D. (BQ)

It is furthermore completely bounded on S¢° by D if

YV S BS?O(S“’) Vy S Bg%(&) Vz S Blé(lg)

> relyr Treze)

(r,e)el




36 B. CYCLES AND 1-UNCONDITIONAL MATRICES

Suppose that z,y, z are as quantified in Ineq. (B.3). Let

€TC = <y7"/HyT||a-Trczc/||zc||>a Nr = HyT”ZQ and Cc = ||Zc||€2-
Then |[nlg,, [ICllez, < 1 and

|| = sup{

5 (sl s ecBose/ 1) - @ € By 5 € By |

(rye)el
< | 2 [ (e /Nyrllea) [l 2 ﬁzxg;c||(ﬁczc/||zc||e2)upcw2) <1,
so that Ineq. (B.2) implies Ineq. (B.3).

The fact that the canonical basis of an £? space is 1-unconditional yields that Schatten-von-
Neumann norms are matriz unconditional in the terminology of [92]:

VCeTOVneT? | Y Cmarcere| = X ancen
(r,c)eRXC (r,c)eRXC

(B.4)

p

for every finitely supported sequence of complex or SP-valued coefficients a,.. Let ( ® n denote the
elementary Schur multiplier ((.7:)(r.c)erxc- Equation (B.4) shows that if ¢ € T¢ and n € T, then
M¢gy is an isometry on every SP. This yields that if ( € €&, n € {%, then the complete norm of
Mcan is [[Cllege [[nlless on every SP.

Relative Schur multipliers also have a central place among operators on S} because they appear
as the range of a contractive projection defined by the following averaging scheme.

Definition 2.3. Let T': S, — S/ be an operator. Let R’ x C’ be a finite subset of R x C' and let
Pr/xcr be the contractive projection onto S, ., defined by the Schur multiplier ¢ ® xg. Then
the average of T with respect to R’ x C' is given by

[T]R’XC’ / d?’] / dC M<*®77* PR/XC’T(MC®77:C) (B5>
TR TC

where (* = (E)CEC and n* = (m)TER-

Proposition 2.4. Let T: S — S7 be an operator and R’ x C' a finite subset of R x C. Then
[Tr xc is a Schur multiplication operator from S to SV~ p/ o such that ||[Trxc|| < ||T). In
faCt; [T]R’XC’ = M(PR’xc’ with

R'xcl _ ) tr erT(er.) if(r,c)e JNR xC'
ore 0 if (r,c) e J\ R x C".

If T is a projection onto S%, then o> = R xcr, so that (TR xcr is a projection onto SYp/ s co-
Let ¢ = (tr e;T(eq))qu. Then |[Myl|| < ||T|| and we define the average of T' by [T] = M,,.

Proof. Formula (B.5) shows that ||[T]r ¢/ ()| < ||T| |||. We have

T (ere) = / dy / AC Me- e Pr o T(Correre)
TR TC

= /JTR dn /]1‘0 d¢ CCUTMC*®U* Z tI‘(eT/C/T(eTc))eT,C,

(r,¢")ER/ X C"

/ dn/ dCCcnr tI’ € ’C’T(erc))cc_lln;ler’c’ - (pi%c’xc €rc-

(r’ c’)GR’XC’

As the norm of a Schur multiplier is the supremum of the norm of its restrictions to finite rectangle
sets, this shows that ¢ is a Schur multiplier on S% and |M,|| < ||T||. If T" is a projection onto S¥,
note that tre’ . T(erc) = x1(r,c). O
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The following proposition relates Fourier multipliers to Herz-Schur multipliers in the fashion of
[79, Th. 6.4] and will be very useful in the exact computation of the norm of certain relative Schur
multipliers.

Proposition 2.5. Let I" be a countable discrete abelian group and A CT'. Let R and C be two copies
of T and consider I = {(r,c) € Rx C : 17 —c € A}. Let ¢ € C! such that there is p € C* with
o(r,¢) = p(r —¢) for all (r,¢) € I. Let G =T, so that T is the group of characters on the compact
group G. Let p € (0, 00].
(a) The complete norm of the relative Schur multiplier ¢ on S¥ is bounded by the complete norm
of the relative Fourier multiplier p on LY (G).

(b) Suppose that T is finite. The norm of the relative Fourier multiplier 1 on L% (G) is bounded by
the norm of the relative Schur multiplier ¢ on S§. The same holds for complete norms.

Remark 2.6. Part (b) is just an abstract counterpart to [75, Chapter 6, Lemma 3.8], where the case
of the finite cyclic group I' = Z/nZ is treated.

Proof. (a) is [77, Lemma 8.1.4]: for all a; € SP, of which only a finite number are nonzero, and all
g € G, we have by matrix unconditionality (Eq. (B.4))

Hzaqeq
qel

> r(9)elg)  arcere

SICONE H

(moel SP(sp)
= |Z( 2 o] =|E( Z anec)s 9
YEA Yrye)el s7(87) yEA Nr,c)el LY (G,s2(SP))
r—c=7y r—c=ry

This yields an isometric embedding of S7(S”) in L% (G, S7(SP)). As SP(SP) may be identified with
SP(€;(€2)),

HZ PqlqCq

qel

= 12 Qrc€re | 7Y :
S7(sP) ‘Z W<(Z ) L2 (G,SP(SP)) S7(sP)

YEA r,c)el
r—c=vy

< a e M, ||| 3 age,
qel

(b). Let us embed Lj} (G) into S} by f ~ my, where m;: €2, — €3 is the convolution operator
defined by
mge. = fre.= Zf(’y)e,y k eo = Z f(r—c)e,:

YEA r—ceA

m ¢ has the matrix representation Z(m) el f (r — ¢)ere. The characters g € G form an orthonormal
basis for % such that m;g = f(g)g: therefore

1/
Imgl =( 317 @P) " = #O IS I
geG

As Mym; = mg—, this shows that the norm of x on LA (G) is the norm of ¢ on the subspace of
I

circulant matrices in S7. The same holds for complete norms. O
3 Idempotent Schur multipliers of norm 1

A Schur multiplier is idempotent if it is the indicator function y; of some set I C R x C; if x; is a
Schur multiplier on SP, then it is a projection of S” onto S}. Idempotent Schur multipliers on S? and

A
tensors in £F ®¢% with 0,1 coefficients of norm 1 may be characterised by the combinatorics of I.

Proposition 3.1. Let I C R x C be nonempty and 0 < p # 2 < co. The following are equivalent.
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(a) For every finite rectangle set R’ x C' intersecting I

Z €. X e,

(r,c)eINR' xC'

=1.

03 @053

(b) St is completely 1-complemented in SP.
(¢) SY is 1-complemented in SP.

(d) I is a union of pairwise disjoint complete bipartite graphs: there are pairwise disjoint sets
R; C R and pairwise disjoint sets C; C C such that I =|JR; x Cj.

Property (d) means that the pattern I is, up to a permutation of columns and rows, block-diagonal:

C, Cy Cs
R/ 0 0

R | 0 0

Proof. (b) = (c) is trivial.

(a) = (b). The complete norm of a Schur multiplier ¢ on SP is the supremum of the complete
norm of its restrictions ¢’ = (¢q)qer xc’ to finite rectangle sets R’ x C’. Furthermore, the complete
norm of an elementary Schur multiplier (7. )(r.c)erxc =1 ® ¢ on SP equals [7][¢z [[C][ ez -

(¢) = (d). If I is not a union of pairwise disjoint complete bipartite graphs, then there are
ro,r1 € R and c¢g, c; € C such that

I/ =1N {To,Tl} X {00701} = {(7’0,00), (7’1,00), (7’0,61)}.

By Proposition 2.4, the average of a contractive projection of SP onto S} with respect to {rg,r1} x
{co, ¢1} would be the contractive projection associated to the Schur multiplier x; . Let x(t), t € R, be
the operator from ¢% to % whose matrix coefficients vanish except for its {ro, 71} x {co, ¢1 } submatrix,

which is (\}5 ?) Its eigenvalues are

1+t4++v9—2t+1t2 t 14+t—vV9—2t+1¢2 2t
2 :2+§+0(t)7 5 :*1+§+0(t)7

so that
{ 2()]loo = 2+t/3+ o(t)

|2()]2 = 27 + 1+ p(2” — 4)t/6 + o(t) for 0 < p < o0

and therefore ||x * z(t)|, = [|z(0)]|, > ||z(t)||, for some ¢ # 0 if p # 2.
(d) = (a). Suppose (d) and let R’ x C" intersect I. Then there are pairwise disjoint sets R} and
pairwise disjoint sets €} such that I N R' x ¢ = R} x C1U--- U R, x C}, and

n n n
Z €c®€‘r=ZXC;®XR’j zaverage(Zeij;) 0 (ZGjXR/j)
(re)EINR/ X C j=1 a=*l \;o j=1

which is an average of elementary tensors of norm 1, so that its projective tensor norm is bounded
by 1, and actually is equal to 1. O

Remark 3.2. Note that the proof of Prop. 3.1 shows that the norm of a projection M, : 5% — S¢°
is either 1 or at least 2/ V3, as

|Gz L= 1 Wl
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This is a noncommutative analogue to the fact that an idempotent measure on a locally compact
abelian group G has either norm 1 or at least v/5/2 [89, Th. 3.7.2]. The norm of M,, actually equals
2/+/3 for I = {(0,0),(0,1),(1,0)}, as shown in [53, Lemma 3]. In fact, the following decomposition
holds:

eo®egt+ep®er +ep ®eg =
((efiﬂ"/12, ei7r/4) ® (efiﬂ'/127 ei7r/4) + (ei7r/127 efi7r/4) ® (eiw/12, e*iﬂ"/4))/\/§.

Remark 3.3. Results related to the equivalence of (¢) with (d) have been obtained independently by
Banks and Harcharras [4].

4 Unconditional basic sequences in 5P

Definition 4.1. Let 0 <p<ocoand I CRx C. Let S=T (vs. S={-1,1}.)

(a) I is an unconditional basic sequence in SP if there is a constant D such that
H E €q0q€ql| < DH E aq€q
P
qel qel

for every choice of signs €, € S and every finitely supported sequence of complex coefficients a,.
Its complex (vs. real) unconditional constant is the least such constant D.

(B.7)

p

(b) Iisa completely unconditional basic sequence in S? if there is a constant D such that (B.7) holds
for every choice of signs €, € S and every finitely supported sequence of operator coefficients
aq € SP. Its complex (vs. real) complete unconditional constant is the least such constant D.

(¢) I is a complex (vs. real, complex completely, real completely) I-unconditional basic sequence
in SP if its complex (vs. real, complex complete, real complete) unconditional constant is 1:
Inequality (B.7) turns into the equality

H E €qlqCq
qel

[
P ey’ P

If Inequality (B.7) holds for every real choice of signs, then it also holds for every complex choice
of signs at the cost of replacing D by Dm/2 (see [93],) so that there is no need to distinguish between
complex and real unconditional basic sequences.

The notions defined in (a) and (b) are called o(p) sets and complete o(p) sets in [37, §4] and [38]
(see also the survey [80, §9].) The notions defined in (c¢) are their isometric counterparts.

By [92, proof of Cor. 4], the real unconditional constant of any basis of S} cannot be lower than
a fourth of the real unconditional constant of I in SP.

Ezample 4.2. A single column R x {c}, a single row {r} x C, the diagonal set {(rown,coln)}, y if
R and C are copies of N, are 1-unconditional basic sequences in all SP. In fact, every column section
and every row section (this is the terminology of [100, Def. 4.3]) is a 1-unconditional basic sequence;
note that the length of every path in the corresponding graph is at most 2.

Note that the set [ is a (completely) 1-unconditional basic sequence in SP if and only if the relative
Schur multipliers by signs on S7 define (complete) isometries. This yields by Prop. 2.1:

Proposition 4.3. Let ] C R x C and 0 <p < oo. If I is a real (vs. complex) 1-unconditional basic
sequence in S, then I is also a real (vs. complex) completely 1-unconditional basic sequence in SP.

Ezample 4.4. T R=C={0,...,n—1}, 1 <p < ooand I = R x C, then the complex unconditional
constant of the basis of elementary matrices in SP is nl'/2=1/?l and coincides with its complete
unconditional constant (see [77, Lemma 8.1.5].) This is also the real unconditional constant if n = 2*

Rk
is a power of 2 as the norm of Schur multiplication by the kth tensor power (1 11) (the kth Walsh

matrix) on S? is (2'1/2*1/1")]{ = plt/2=1/Pl Let us now show that if n = 3, the real unconditional
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constant of the basis of elementary matrices in S* is 5/3 and differs from its complex unconditional
constant, v/3. In fact, because the canonical bases of (% and (% are symmetric, the norm of a Schur
multiplier by real signs turns out to equal the norm of one of the following three Schur multipliers:

1 1 1 1 1 1 -1 1 1
11 1),(1 1 1 Jor 1 -1 1
1 1 1 11 -1 1 1 -1

The first one has norm 1: it defines the identity. The second one has the same norm as the Schur

1 1
multiplier ( ), which is v/2, because the norm of that multiplier equals the norm of its tensor

1 -1
1 1 1 1
R S T R _
product by Ideg, which is 11 -1 -1 By Prop. 2.5 for I' = Z/3Z, the third one has the
1 1 -1 -1
same norm as the Fourier multiplier ¢ = (—1,1,1) on L°°(G), where G = {z € C : 23 = 1}: as this
multiplier acts by convolution with f = —1+ z + 22, its norm is || f||11(¢), that is

(l —14+14+ 1| + | — 1+ e2i7r/3 + e4i7r/3| + | — 14+ e4i7r/3 + e2i7r/3|)/3 — 5/3.

Complex interpolation yields that the real unconditional constant of the basis of elementary matrices
is in fact strictly less than its complex counterpart in all SP with p # 2.

5 Varopoulos’ characterisation of unconditional matrices in S®

Our results may be seen as the isometric counterpart to results by Varopoulos [100] on tensor algebras
over discrete spaces and their generalisation to SP. He characterised unconditional basic sequences

AN
of elementary matrices in S°° in his study of the projective tensor product co ® cg. We gather up his
results in the next theorem, as they are difficult to extract from the literature.
Theorem 5.1. Let I C R x C. The following are equivalent.
(a) I is an unconditional basic sequence in S™.

(b) I is an interpolation set for Schur multipliers on S*: every bounded sequence on I is the
restriction of a Schur multiplier on S*.

(¢) I is a V-Sidon set as defined in [100, Def. 4.1]: every null sequence on I is the restriction of
A
the sequence of coefficients of a tensor in co(C) @ co(R).
v
(d) The coefficients of every tensor in Ké‘@ﬁ}% with support in I form an absolutely convergent
series.
(€) (2¢2,.)(rc)er is a Sidon set in the dual of TC x T, that is, an unconditional basic sequence in
C(T® x TH).
(f) There is a constant X such that for all R C R and C' C C with n elements #[INR' x C'] < An.
(g) I is a finite union of forests.
(h) I is a finite union of row sections and column sections.
(i) Every bounded sequence supported by I is a Schur multiplier on S>.

Sketch of proof. (a) = (b). If (a) holds, every sequence of signs € € {—1,1}! is a Schur multiplier
on S7°. By a convexity argument, this implies that every bounded sequence is a Schur multiplier on
S9°, which may be extended to a Schur multiplier on S*° with the same norm by [72, Cor. 3.3].

(b) = (c) holds by Grothendieck’s inequality (see [79, §5]) and an approximation argument.

(d) is but the formulation dual to (c) (see [99, §6.2].)
(d) = (e). A computation yields

§ Qrc€c @ €y

(ryc)el

, = sup
Loty lzellel=1

A
g QreZeZy

(r,e)el

. (B.8)
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(e) = (f) is [100, Th. 4.2]. (The proof can be found in [99, §6.3] and in [98, §5].)

(f) = (9), (f) = (h) can be found in [98, Th. 6.1].

(9) = (h). In fact, a forest is the union of a column section I’ with a row section I (a bisection
in the terminology of [100, Def. 4.3].) It suffices to prove this for a tree. Let its vertices be indexed
by words as described in the Terminology. Then the set I’ of couples of the form (w,w™c) with w
a word and c¢ a letter is a column section; the set I” of couples of the form (w™r,w) with w a word
and 7 a letter is a row section.

(h) = (7) is [98, Th. 4.5]. Note that row sections and column sections form 1-unconditional basic
sequences in S and are 1-complemented in S by Prop. 3.1.

(1) = (a) follows from the open mapping theorem.

6 Closed walk relations

We now introduce and study the combinatorial objects that we need in order to analyse the expansion
of the function defined by
Z €qQqCq

qel

P
®;(e,a) =tr

(B.9)

for I C R x C, a positive even integer p = 2k, signs ¢, € T and coefficients a, € C, of which only a
finite number are nonzero. In fact,

k
(I)[(E, a‘) = tI‘( Z (ETCaTceTC)* (erlc’a'r/c/ Crre ))

(rye),(r'se)el

k
_ -1 —
=tr Z H(GT«;C«; Qric; €cir; ) (67“;0; ar;cg er;c’i)
=1

(r1,e10),(r ¢, (B.10)
(rhser)s (g c) €D
k
= Z H € e EricisiGrye G,y (Where i1 = c1.)
(Tl,cl),(’r’l,CQ) ..... =1
(riser) (Thycrp1) €D
The latter sum runs over all closed walks (c1,71,¢2,...,ck,7) of length p in the graph I. With
multinomial notation, its terms have the form ~*@*a? with |a| = |3| = k. The attempt to describe
those couples («, 8) that effectively arise in this expansion yields the following definition.
Definition 6.1. Let p = 2k > 0 be an even integer and I C R x C.
(a) Let AL = {a e N!: >_ge1 0q =k} and set
Bl ={(a,8) € Al x AL :Vr Y ape =3 Breand Ve X ape =, Bre}-
(b) Two couples (o, 8%) € By, , (o2, 32) € B, are disjoint if ki, ky > 1 and
at.,>1 = V(',e)el a2,=0 and V(r,d)el o, =0. (B.11)

(c) The set #,! of closed walk relations of length p in I is the subset of those («,3) € Bi that
cannot be decomposed into the sum of two disjoint couples.

(d) Let Wé be the set of closed walks of length p in the graph I. To every closed walk P =
(c1,71,¢2,72, ..., ck, 7)) of length p we associate the couple (, 3) € AL x Al defined by

Qg :#[Z e{l,....k}:(ri,c) :q]
Bq = #[i €{L,... .k} (ri,ciya) = ‘I] (where c11 = c1.)
We shall write P ~ (a, 3) and call n,g the number of elements of WY mapped onto («, 3).

Note that the conditions in Eq. (B.11) is in fact symmetric and that it may be stated with 3!
and 2 instead of o! and a?.
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Ezample 6.2. Let R=C ={0,1,2,3} and I = R x C. The couple (ego + €11 + €22 + €33, €01 + €10 +
ea3 + e32) is an element of B\ #/[: it is the sum of the two disjoint closed walk relations (egg + €11,
eo1 + e10) and (eaz + e33, €23 + e32).

Ezample 6.3. Let I = R x C' = {0,1} x {0,1}. Two closed walks are associated with the closed walk
relation (egp + €11, €01 + e10) € #4 : the two cycles (col0,row0, col1,row 1) and (col1,row 1, col0,

row 0). Six closed walks are mapped onto the closed walk relation (2eqo + 2€01,2€00 + 2€01): the
4!
2130 concatenations of a permutation of (col 1,row0), (col1,row0), (col0,row0), (col0,row0).

The next proposition shows that, for our purpose, closed walk relations describe entirely closed
walks.

Proposition 6.4. Let p = 2k > 0 be an even integer and I C R x C'. The image of the mapping in
Def. 6.1(d) is #;!

(a) if P € WL and P ~ (a, B), then (a, B) € #!;
(b) if (o, B) € #,L, then there is a P € W} such that P ~ («, 8), so that nag > 1.

Proof. (a). Let P = (¢1,71,¢2,72,...,Ck, k). In fact,

Zarc: 16{1 k}ZTi:T]:ZCﬂTC
Za”: [i € {1,. k}ZCiZC]erﬁrc

and (o, 8) € BL. If (o, B) = (o, BY) + (a2, %) with (a?, 8*) € BL and k; > 1, there is an i such that

0471_ ., = 1land a? e =1 (Where (rig1,Cit1) = (Tl,cl) if 1= k) If BT cn 2 1, then " ozrc a2 L
so that there is an r such that ol = > 1. Otherwise 52, cira = 1, 80 that >, o2 . >1 and there is a

c such that a? . > 1. Therefore (o}, ') and (a?, 3%) are not disjoint and (a, 8) € #/.

(b). We have to find a closed walk of length p that is mapped onto («, ). If &k = 0, the empty
closed walk suits. Suppose that k > 1; Consider a walk (c1,71,¢2,72,...,¢j,7j,¢iy1) in I such that
o = #i: (ri,¢) = ] < ag and By = #[i : (ri,cip1) = q] < By for every g€ RxC, and furthermore

Jj is maximal. We claim (A) that ¢;+1 = ¢; and (B) that j = k. Let (o2, %) = (« B) (at, BY).
(A) If Cjt+1 7& Ci, then

Zraicjﬂ = #[’L S {1,...,]} 1Cp = Cj+1]
Zrﬂicfrl - #[’L € {157J+ 1} FG = cj+1] = 1+Zra7ldcj+l’

so that there must be ;1 with o2 > 1. But then

Ti+1Cj+1

Z ﬂ’"ﬂrlc B Z 72"J+lc 21

and there must be ¢jio such that 32, ez > 1: j is not maximal.
(B). Suppose that j < k. Then ( L gl e BI and (a?,3?) € BI By hypothesis, they are not
disjoint: there are 7, ¢, ¢ such that al.a?. > 1 or 7,7/, ¢ such that arcar . = 1. By interchanging R

and C and by relabelling the vertices if necessary, we may suppose without loss of generality that
for #{ = r; there is ¢} such that o2, , > 1. Then there is c’2 such that 62, , = 1. By the argument
11

used in Claim (A), there is a closed walk (¢}, 7], ¢, ... r’,) such that #[ i:(rj,c) =q] <aZ and

9 JH ]
#li - (rf,ciyy) = q] < B (where ¢}, = ¢}.) Then the closed walk
A R A
(C1,71,€2,72, -+, Cj,Tj,Co, Ty o ooy Cry T, €157 )
shows that j is not maximal. O

We are now in position to state the following theorem, a matrix counterpart to the computation
presented in [63, Prop. 2.5(7)].

Theorem 6.5. Let p = 2k be a positive even integer and I C R x C.
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(a) The function ®; in Eq. (B.9) has the expansion

Dy(e,a) = Z Nage®“a%a”, (B.12)
(a.B)eW]

where nag = 1 for every (o, B) € #L.
(b) If e € T! and a € (SP)! is finitely supported, then the function

P

V(e a) =tr Z €qQqCq (B.13)

qel

has the expansion
k

Z Gﬁia Z H a:iciaTiC¢+1 (U)Zth ck-‘,—l - cl-) (B14)

(a.8)ew] (€151 eesClesi )~ (@, B) i=1
Proof. This follows from Def. 6.1 and Prop. 6.4. 0

Note that the edges of a closed walk P ~ («, 8) are precisely those {r, ¢} such that a,. + S, > 1.
P is a cycle if and only if P does not have length 0 or 2 and ), oy < 1 for all cand >, a,. <1 for
all r. We now show how to decompose closed walks into cycles.

Proposition 6.6. Let P = (¢1,71,¢2,72,...,¢k, k) ~ (o, B) be a closed walk.

(a) Ifri =7; (vs. c; = c;) for some i # j, then P is the juxtaposition of two nonempty closed walks
Pi ~ (ol 81) and P, ~ (o2, %) such that (0. 6) = (a1, 3') + (02, ) and 3, al,... 3,0, > 1
(US' Zr a71"ci ) ZT Oé,%ci = 1)

(b) P is the juztaposition of nonempty closed walks P; ~ (a7, 37) such that Y, oi. <1 for all c,
S ad, <1 for all v and (o, B) = Y (o, B7).

(c) There are cycles Py ~ (o7, 37) and a y such that (o, ) = (7,7) + X(a?, 87).

Proof. (a). If r;, = r; for i < j, we may suppose that j = k: consider the closed walks P, = (¢,
T1,...5Ci, 1) and Py = (Cig1,Tit1,.-,Ch,Tk). I ¢; = ¢; for i < j, we may suppose that ¢ = 1:
consider then Py = (¢1,71,...,¢j-1,7j-1) and Po» = (¢;,75,. .., Ck, k).

(b). Use (a) in a maximality argument.

(c). Note that the closed walks P; in (b) are either cycles or have length 2; in the latter case
P =g~ (eq,e,) for some g € I. O

7 Schur multipliers on a cycle

We can realise a cycle of even length 2s, s > 2, in the following convenient way. Let I' = Z/sZ. Then
the adjacency relation of integers modulo s turns I' into the cycle (0,1,...,s — 1) of length s. We
double this cycle into the bipartite cycle (col0,row0,coll,rowl,...,cols —1,rows —1) on T II T,
corresponding to the set of couples I = {(,4),(i,i+1):9 €'} CT x It I is the pattern

0 1 2 s—2 s—1
0 * * 0
1 0 * *

2 0 0 *

s—2 0 0 0o . * *
s—1 * 0 0 0 *

[ is the group dual to G =T' = {z € C: 25 = 1}. We shall consider the space L (G) spanned by
A = {1,2} in LP(G), where z is the identical function on G: its norm is given by ||a + bz||rr(q) =

(570 Xy la+b2[r) /7.
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Proposition 7.1. Let 0 <p < oo, s =2 and I = {(i,i),(i,i+ 1) :i € Z/sZ}. Let e € T be a Schur
multiplier by signs on S%.
(a) The Schur multiplier € has the same norm as the Schur multiplier € given by €, = 1 for q #
(s —1,0) and é;_1,0 = €o€o1 - - - €5-1,5—1€5-1,0-
(b) The Schur multiplier € has the same norm as € given by &; =1 and & ;41 = ¥ with ¥ any sth
root of és—1.0 or its complex conjugate: without loss of generality, 9 = e'“ with a € [0, 7/s].
(¢) The norm of € on Sy is bounded below by the norm of the relative Fourier multiplier p : a+bz
a+ 9bz on LY (G); their complete norms are equal.
(d) The norm of € on S} and on S3° is equal to the norm of p on L} (G) and on LY(G): this norm
18
cos(a/2 —7/2s)  maxus—_1 ¢+ 2|

cosT/2s |14 ein/s)

(€) The Schur multiplication operator M is an isometry on Sy if and only if p/2 € {1,2,...,s—1}
OT €00€01 - - - €s—1,5—1€5-1,0 = 1.

Proof. (a) and (b) follow from the matrix unconditionality of Schatten-von-Neumann norms (see
Eq. (B.4)) and from the fact that the Schur multipliers € and € = (€;)4er have the same norm on S%.

(¢) follows from Prop. 2.5.

(d). Let us compute f(8) = ||1 + eiBzHLl(G). As f(B) = f(B+2n/s) = f(—p), we may suppose
without loss of generality that § € [0,7/s]. Then |3/2 + kn/s| < /2 if —|s/2] <k < [s/2] — 1, so
that

[s/2]1-1

1 . .
_ - iB ,2ikn/s
FB) =2 ) [L+elein
k=—s/2]
9 [s/2]1-1
=- Z cos(B/2 + kr/s)
s
k=—s/2]
_ 2% eiﬁ/2el|'s/2'|7r/.s _ 671[5/2j/s
s eim/s — 1
_ 2 cos(B/2 —w/2s) if sis even
 ssin(m/2s) | cos(3/2) if s is odd.

This shows in both cases that the norm of x4 on Li(G) is bounded below by cos(a/2 — 7/2s)/
cos(m/2s). The complete norm of p on LY (G) is equal to its norm and thus to the maximum of
g(w) = |lw + 9zl w (g /W + 2|l () for w € C. Let w = re'# with r > 0 and 3 € R. Note that

lw + 2|l @y = |7 + e1d(8.(2m/5)0)|

is a decreasing function of d(3, (27/s)Z) and that
d(a =B, (2m/s)Z) < d(B, (21/s)Z) < B €la/2,m/s + a/2[ mod 2m/s.

As g(w) = g(wz) if 2° = 1, we may suppose without loss of generality that 5 € Ja/2,7/s + a/2].
Therefore

wte it 8 €la/2,m/s]
glw) =4 WL
% ifgeln/s,m/s+a/2.

As g tends to 1 at infinity and g(w) = 1 if 8 € {«a/2,7/s+ «/2}, the maximum principle shows that
g attains its maximum with 8 = 7/s. Finally,
2 14 2rcos(n/s — ) +r?

14 2rcos(m/s) + 12

B cos(m/s — a) —cosm/s oim/5)? _ cos(m/2s — a/2)\”
= e T i ST ( cos /25 ) '

glrei™?)
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(e). If pis not an even integer and ¥ # 1, then y is not an isometry on L (G): otherwise the functions
z and ¥z would have the same distribution by the Plotkin-Rudin Equimeasurability Theorem (see [48,
Th. 2]). If p € {2,4,...,2s— 2}, then I contains no cycle of length 4,6, ..., p, so that by Prop. 6.6(c)
every closed walk P ~ («, ) satisfies &« = . The function ®;(e, a) in Eq. (B.9) is therefore constant
in € by Th. 6.5(a). If p € {25,25+ 2,...}, the closed walk relation

(a,8) = (Z €ii, Z ei,i—i—l) + (p/2 — s)(eo0; €oo)
= iel
satisfies nog > 1 by Prop. 6.4. Then the coefficient of ®(e,a) in a“a” equals

NaBE0EOL - - - €s—1,5—1€5—1,0
and must equal the same quantity with e replaced by 1 if € defines an isometry on S%. o
Remark 7.2. See [50, p. 245] for a similar application of the Plotkin-Rudin Equimeasurability Theorem
in (e).

The real unconditional constant of I is therefore the norm of € with o = 7/s, and the complex
unconditional constant is the maximum of the norm of € for « € [0,7/s]. This yields

Corollary 7.3. Let 0 < p < oo and s > 2. Let I be the cycle of length 2s.
(a) I is a real 1-unconditional basic sequence in SP if and only if p € {2,4,...,2s — 2}.

(b) The real and complex unconditional constants of I in the spaces S' and S*° equal sec T /2s.

8 1-unconditional matrices in S, p not an even integer

We now state the announced isometric counterpart to Varopoulos’ characterisation of unconditional
matrices in S°° (Section 5) and its generalisation to S? for p not an even integer.

Theorem 8.1. Let I C R x C be nonempty and p € (0,00] \ 2N. The following are equivalent.

(a) I is a complex completely 1-unconditional basic sequence in SP.
(b)

(c)

d) I is a forest.
(e)

)

I is a complex 1-unconditional basic sequence in SP.

I is a real 1-unconditional basic sequence in SP.

e) For each e € T! there are ¢ € T and n € TR such that e, = ((c)n(r) for all (r,c) € I.

f) For each e € {—1,1} there are ¢ € {—1,1}¢ and n € {—1,1}F such that €. = ((c)n(r) for all
(r,c) el

(9) I is a set of V-interpolation of constant 1: for all ¢ € £3°

(
(

inf{ Z Pre€e ® €y CPlr = gp} = sup |gq]- (B.15)
(r,c)eRxC F L ael
(h) I is a V-Sidon set of constant 1: for all ¢ € co(I)
inf{ Z Pre€c @ €y R C Pl = <p} = sup |pq|- (B.16)
co(C)®co(R) qel

(r,c)ERXC

v
i) For every tensor u = Are€e ® e, in L5 @ LY with support in I we have ||u v =
( C R 01 oL

C® R

r,c)el

Z(r,c)el |@rel.
(4) (2¢2))(r,c)e1 is a Sidon set of constant 1 in the dual of T x T, that is, a 1-unconditional basic
sequence in C(TC x TR): if (a,.) is finitely supported,

sup ‘ Z AreZe?)| = Z |are| -

C R
(22" )€TEXT (r,c)el (r,c)el
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(k) For all R C R and C' C C with k > 1 elements #[IN R x C'] < 2k — 1.

(1) I is an isometric interpolation set for Schur multipliers on S°°: every ¢ € (5° is the restriction
of a Schur multiplier on S*° with norm [[Myl| = [[¢]|¢s .

Proof. (a) = (b) = (c) is trivial.

(¢) = (d). Suppose that I contains a cycle (cg,ro,...,cs—1,7s—1) with s > 2. Cor. 7.3(a) shows
that I is not a real 1-unconditional basic sequence in SP.

(d) < (k). A tree on 2k vertices has exactly 2k—1 edges, so that a forest I satisfies (k). Conversely,
a cycle of length 2s is a graph with s row vertices, s column vertices and 2s edges.

(d) = (e). Suppose first that I is a tree and index the vertices of its edges by words w € W as
described in the Terminology. Let us define n and ¢ inductively. If r is the root of the tree, indexed
by @, let n(r) = 1. Suppose that n and ¢ have been defined for all vertices indexed by words of
length at most 2n. If ¢ is indexed by a word w of length 2n + 1, let r be the vertex indexed by the
word of length 2n with which w begins and let {(¢) = €(r,¢)/n(r). If r is indexed by a word w of
length 2n + 2, let ¢ be the vertex indexed by the word of length 2n + 1 with which w begins and
let n(r) = e(r,c)/¢(c). If I is a union of pairwise disjoint trees, we may define n and ¢ on each tree
separately. We may finally extend 1 to R and ¢ to C in an arbitrary manner.

(d) = (f) may be proved as (d) = (e).

(f) = (c). If (f) holds, then every Schur multiplier by signs ¢ € {—1,1}! is elementary in the
sense that € = ( ® 7. The complete norm of M. on any S is therefore ||C||es [|7]l¢2e = 1.

(€) = (g). If (e) holds, every ¢ € T! C ¢3° may be extended to an elementary tensor ¢ ® n of
norm 1. (g) follows because every element of £3° with norm 1 is the half sum of two elements of T':
note that eit cosu = (e!t+¥) 4 eilt=w) /2,

(9) = (h). It sufﬁces to check Equality (B.16) for ¢ with support contained in a finite rectangle
set R' x C'. As (g, ®f ) is a subspace of £ Q%E?, Eq. (B.15) yields Eq. (B.16).

(h) & (i) because they are dual statements.
(1) © (j). Use Equality (B.8).
(h) = (I) may be deduced by the argument of Prop. 3.1(a) = (b).

(I) = (a). Taking sign sequences ¢ € T! in (I) shows that all relative Schur multipliers by signs
on S¢° define isometries. Apply Prop. 4.3. O

Remark 8.2. The equivalence of (e) with (j) may also be shown as a consequence of the characteri-
sation of Sidon sets of constant 1 in [21].

Let us now answer Question 1.3.
Corollary 8.3. Let I C R x C. The following are equivalent.
(a) For all ¢ € co(I) one has Hz(r,c)el Pre€e ® eTHco(C)@A@co(R) = SUP,er gl

(b) There are pairwise disjoint sets R; C R and pairwise disjoint sets C; C C' such that R; or C; is
a singleton for each j and I =|JR; x C;: I is the union of the column section U# Ry=1 R; xC;
with the disjoint row section U# R;>1 R; x Cj.

(¢) I is a union of pairwise disjoint star graphs: every path in I has length at most 2.

Proof. (a) = (b) follows from Prop. 3.1(a) = (d) and Th. 8.1(g) = (d).

(b) & (c). (b) holds if and only if (r,¢c), (r',¢), (r,) € I = (r =7 or ¢ = ¢’) and therefore if and
only if (¢) holds.

(b) = (a). Suppose (b) and let ¢ € co(I). Let a; = sup(, o)er, xc; [¢rel 12 1f aj = 0, let us define
0’ = 0and 7/ = 0. Otherwise, if R; is a singleton {7}, let us define ¢/ = aje, and 77 by 74 = Pre/aj
1f ceCjand v =0 otherwise. Othervvlse C; is a singleton {c} and we define 7/ = a;e. and ¢/ by

= ./ if r € R;j and o) = 0 otherwise. Note that the 47 have pairwise disjoint support and are

null sequences, as Well as the ¢/. Then

Z Pre€c ® €, = Z'y] ® o = average<z Ej’}/j) ® (Z ejgj)

(r,e)el J J
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A
is an average of elementary tensors in co(C') ® co(R) of norm sup,¢; ¢4, so that this average is also
bounded by this norm, which obviously is a lower bound. o

9 1l-unconditional matrices in SP, p an even integer

Let us now prove Theorem 1.5 as a consequence of Theorem 6.5 together with Proposition 6.6(c).

Theorem 9.1. Let I C R x C and p = 2k a positive even integer. The following assertions are
equivalent.

(a) I is a complex completely 1-unconditional basic sequence in SP.
(b) I is a complex 1-unconditional basic sequence in SP.

(¢) For every finite subset F C I there is an operator x € SP, whose support S contains F, such
that HZ eqacqequ does not depend on the complex choice of signs € € TS,

(d) I is a real 1-unconditional basic sequence in SP.

(e) For every finite subset F' C I there is an operator x € SP with real matriz coefficients, whose
support S contains F', such that HZ eqacqequ does not depend on the real choice of signs € €
{—1,1}%.

(f) Fwvery closed walk P ~ («, 8) of length 2s < 2k in I satisfies « = (5.

(9) I does not contain any cycle of length 2s < 2k as a subgraph.

(h) For each v,w € V there is at most one path in I of length | < k that joins v to w.

Proof. (a) = (b) = (c), (b) = (d) = (e) are trivial.

(¢) = (g). Suppose that I contains a cycle P ~ (v, ) of length 2s < 2k: the corresponding set of
couples is F' = {q: vy + 4 = 1}. Let x be as in (¢) and let (o, 8) = (7,9) + (k — s)(eq, €4) for some

arbitrary ¢ € F. Then (a, ) € WkS. Consider f(e) = HZ eqxqequg as a function on the group T%.

Then the Fourier coefficient f(eﬂ_o‘) of f at the Steinhaus character ¢~ is, by Th. 6.5(a),

Z{ngcf‘gzc (e, 0)e#S and ( —e=fF— o}
=772’ Z{nsgf‘g_"’zc_é H(e,Q) € #0 and ( —d=e— v}
(Note that 8 —a =& —~.) As this last sum has only positive terms and contains at least the term
corresponding to (a, ), f cannot be constant.

(e) = (g). Let P ~ (v,9), F ={q:v4+ g =1} and (, ) be as in the proof of the implication
(¢) = (h). Let x be as in (e). Consider f(e) = [|>° eqzqeqHZ as a function on the group {—1,1}°.

Then the Fourier coefficient jA’(eﬁ’o‘) of f at the Walsh character ¢#~ is, by Th. 6.5(a),

Z{nacch e, et and(—e=—-a (mod 2)}
= g+ Z{nggxﬁcf'yf‘s () et and(—e=0—7 (mod 2)}.

As this last sum has only positive terms and contains at least the term corresponding to (a, ), f
cannot be constant.

(f) < (g9)- Apply Prop. 6.6(c).

(9) & (h). If I contains a cycle (vo,...,v25—1), then I contains two distinct paths (vo,...,vs),
(vo,V25—1, - - .,vs) of length s from vy to vs. If T contains two distinct paths (vo, ..., v), (V4. ..,v})
with vo = v, v; = v}, and {,!’ < k, let a be minimal such that v, # v/, let b > a be minimal such
that vy € {v),,..., v}, } and let d > a be minimal such that v, = vy. Then (ve—1,...,0p,0_4,...,0})

is a cycle in I of length 2s < 2k.
(f) = (a) holds by Theorem 6.5(b): If each (a, 3) € #}! satisfies « = 3, then Eq. (B.14) shows
that Uy (e, z) as defined in Eq. (B.13) is constant in e. O

Remark 9.2. The equivalence (b) < (g) is a noncommutative analogue to [63, Prop. 2.5(ii)].
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Remark 9.3. In [64, Th. 2.7], the condition of Th. 9.1(f) is visualised in another way: a closed walk
P=(c1,r1,...,¢s,75) ~ (a, ) in N x N is considered as the polygonal closed curve « in C with sides
parallel to the coordinate axes whose successive vertices are 1 +icy, 1 +ico, 72 +1ico, ..., Ts_1 +ics,
rs +ics, 75 + ic; and again r; + ic;. Then a = f if and only if the index with respect to v of every
point not on 7 is zero, if and only if v can be shrunk to a point inside of the set of its points.

Remark 9.4. One cannot drop the assumption that = has real matrix coefficients in Th. 9.1(e).
Consider a 2 x 2 matrix . Then traz*z = > |z4|? and det z*z = |zooz11 — Xo1710/>. This shows that
1

1
sign of the matrix coefficients of x, whereas (col0,row0,col1,row 1) is a cycle of length 4.

1
if R(Tooz11201210) = 0, €.8. & = ) then the singular values of  do not depend on the real

Remark 9.5. Theorem 9.1(h) = (a) is the isometric counterpart to [38, Th. 3.1], which shows in
particular that I is an unconditional basic sequence in S?* if the number of walks in I between
two given vertices of length & and with no edge repeated has a uniform bound. The following
combinatorial problem arises naturally: if I satisfies this latter condition, is it so that I is the union
of a finite number of sets I; such that there is at most one path of length at most k in I; between
two given vertices? In the simplest case, k = 2, William Banks, Ilijas Farah, Asma Harcharras and
Dominique Lecomte [5] have deduced from [87] that it is not so.

10 Metric unconditional approximation property for S}

Let R,C be two copies of N. It is well known that, apart from S2?, no SP has an unconditional
basis or just a local unconditional structure (see [80, §4].) S' and S* cannot even be embedded in
a space with unconditional basis. If 1 < p < oo, then SP has the unconditional finite dimensional
decomposition

p P
@ S{(T,c):rgn,c:n} ® S{(T,c):r:n—i—l,cgn}
neN

because the triangular projection associated to the idempotent Schur multiplier (x,r<.) is bounded
on SP.
Definition 10.1. Let X be a separable Banach space and S=T (vs. S = {-1,1}.)

— A sequence (T} ) of operators on X is an approxzimating sequence if each T} has finite rank and
|ITxx — x| — 0 for every x € X. An approximating sequence of commuting projections is a
finite-dimensional decomposition.

— ([73].) The difference sequence (ATy) of (Ty) is given by ATy = Ty and ATy, = T, — Th—1
for k > 2. X has the unconditional approzimation property (uap) if there is an approximating
sequence (T}) such that for some constant D

i GkATk
k=1

The complex (vs. real) unconditional constant of (T}) is the least such constant D.

<D forall nand ¢, €S.

- (22, §3], [32, §8].) X has the complex (vs. real) metric unconditional approzimation property
(muap) if, for every ¢ > 0, X has an approximating sequence with complex (vs. real) uncondi-
tional constant 1+ d. By [22, Th. 3.8] and [32, Lemma 8.1], this is the case if and only if there
is an approximating sequence (T}) such that

sup || Ty + e(Id — T)|| — 1. (B.17)
e€S

X has (muap) if and only if, for every given 6 > 0, X is isometric to a 1-complemented subspace
of a space with a (1 4 ¢)-unconditional finite-dimensional decomposition [31, Cor. IV.4]. If X has
(muap), then, for any given § > 0, X is isometric to a subspace of a space with a (1+¢)-unconditional
basis.
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Ezxample 10.2. The simplest example is the subspace in SP of operators with an upper triangular
matrix. In fact, if I C R x C is such that all columns I N R x {c} (vs. all rows I N {r} x C) are
finite, then S7 admits a 1-unconditional finite-dimensional decomposition in the corresponding finitely
supported idempotent Schur multipliers x7nrx{c} (VS- X1n{r}xc-)

Our results on complete 1-unconditional basic sequences yield the following theorem.

Theorem 10.3. Let 1 < p < oo. Let R, C R, r € N, be pairwise disjoint and finite. Let C. C C,
c € N, be pairwise disjoint and finite. Let J C N xN and I = U(r,a)eJ R, x C.. Then the sequence of
Schur multipliers (Xr, xc.)(r,c)es forms a complexr 1-unconditional finite-dimensional decomposition
for SY if and only if J is a forest or p is an even integer and J contains no cycle of length 4,6, ..., p.

We may always suppose that approximating sequences on spaces S7 are associated to Schur
multipliers. More precisely, we have

Proposition 10.4. Let 1 < p < oo and I C R x C. Let (T,,) be an approximating sequence on SY.
Then there is a sequence of Schur multipliers (¢,) such that (M, ) is an approximating sequence on
SY and such that if (T},) satisfies (B.17), then so does (M, ).

Proof. Let d,, > 0 be such that §,, — 0. As T, has finite rank, there is a finite R, x C,, C R x C such
that the projection Pgr, xc, of SP onto S%nx ¢, defined by the Schur multiplier xc, ® xr,, satisfies
|1Pr, xc, Tn — Tn|| < 0n. Let ¢, be the Schur multiplier associated to [T, g, xc,. With the notation
of Eq. (B.5),

Mo, @) == [ dn [ dMeor (Pryxe, T~ 1) (Maye).

As Pgr, «c,Tn tends to the identity uniformly on compact sets, this shows that M, is an approxi-
mating sequence. As

Mg, +€e(Id —M,,) = [Pr,xc, Tn + €(Id — Pr, xc, Tn)] »
the norm of this operator is at most ||75, + e(Id — T5,)|| + 205. O
This proposition shows together with Prop. 2.1 the following results.

Corollary 10.5. Let 1 <p< oo and I C R x C.

— If S¥ has (muap), then some sequence of Schur multipliers realises it.
— Let J C I. If S} has (muap), then so does St.
— If S° has (muap), then so does Sh.

Let us define the following asymptotic properties.

Definition 10.6. Let 1 <p< oo, [ CRxCand S=T (vs. S={-1,1}.)

— S¥ is asymptotically unconditional if for every x € S} and for every bounded sequence (y,,) in
S? such that each matrix coefficient of y,, tends to 0

— mi — 0.
max ||z + eyn||, —min ||z + eyn|l,

— I enjoys the property (%) of block unconditionality in SP if for each § > 0 and finite F' C I,
there is a finite G C I such that

Ve € Bgy Yy € Bgy - max |z +eyll, —min o+ eyll, <0.

The arguments of [63, §6.2] show mutatis mutandis

Theorem 10.7. Let 1 < p< oo, [ CRXxC and S=T (vs. S = {-1,1}.) Consider the following
properties.
(a) SY is asymptotically unconditional.

(b) I enjoys (%) in SP.
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(¢) S% has (muap).

Then (¢) = (a) & (b). If 1 < p < oo, then (b) & (). If p=1, S} has (muap) if and only if S}
has (uap) and I enjoys (%) in S*.

The case p = oo is extreme in the sense that the following properties are equivalent for S°: to be
a dual space, to be reflexive, to have a finite cotype, not to contain ¢y, because they are equivalent
for I not to contain any sequence (r,,¢,) with (r,,) and (¢,) injective, that is for I to be contained
in the union of a finite set of lines and a finite set of columns, so that S3° is isomorphic to 7.

Let us now introduce the asymptotic property on I that reflects the combinatorics imposed by
(muap).

Definition 10.8. Let ] C R x C' and k > 1.

— I enjoys property 7 if for every path P = (co,70,...,¢;,rj) of odd length 2j +1 < k in [
there is a finite set R’ x C’ such that P cannot be completed with edges in I\ R’ x C’ to a
cycle of length 2s € {45+ 2,...,2k}.

— The asymptotic distance ds(r,c) of r € R and ¢ € C in I is the supremum, over all finite
rectangle sets R’ x C’, of the distance from r to ¢in I\ R’ x C".

The asymptotic distance takes its values in {1,3,5,...,00}. Note that #; is true and that
Fr = _Zr—1. This implication is strict: let R,C be two copies of N and, given j > 1, consider the
union I; of all paths (col0,rownj+1,colnj+1,...,rownj + j,colnj + j,row0) of length 25 + 1.
Then I; contains no cycle of length 2s € {4,...,45} and therefore enjoys f#;, but fails #s;41;
I; U{(row0,col0)} contains no cycle of length 2s € {4,...,2;} and thus enjoys _#;, but fails Z; 1.
In particular, the properties #x, k > 2, are not stable under union with a singleton.

Let us now explicit the relationship between ¢ and d.

Proposition 10.9. Let I C R x C and k > 1.

(a) I enjoys fZy if and only if any two vertices r € R and ¢ € C at distance 2j + 1 < k satisfy
doo(r,c) = 2k — 25 + 1.

(b) If dso(r,c) = 2k +1 for all (r,c) € R x C, then I enjoys #.
(¢) If dso(r,c) < k for some (r,c) € R x C, then I fails #.
(d) I enjoys #i for every k if and only if doo(r,c) = 00 for every (r,c) € R x C.

Proof. (a) is but a reformulation of the definition of #j and implies (b).

(d) is a consequence of (b) and (c).

(¢). If deo(r,c) < Kk, then there is 0 < j < (k — 1)/2 such that there are infinitely many paths of
length 2j 4+ 1 from c to 7: there is a path (¢,r1,¢1,...,75,¢;,7) that can be completed with edges
outside any given finite set to a cycle of length 45 4+ 2 < 2k. O

Theorem 10.10. Let I C R x C and 1 < p < 0o. If p is an even integer, then S} has complex or
real (muap) if and only if I enjoys #p,/o. If p= oo or if p is not an even integer, then S§ has real
(muap) only if I enjoys Zi for every k.

Proof. Suppose that I enjoys (%) in S” and fails _#,. Then, for some s < k, I contains a sequence of
cycles (co, 70, -, Cj—1,Tj-1,€¢}, 77, ..., c4_q,75_1) with the property that ||z —yll, < (1+1/n)|[z+yl,
for all & with support in {(ro,co), (ro,c1),-..,(rj—2,¢j-1), (rj—1,¢j—1)} and all y with support in
{(rj—1,¢}), (i cf), .o (ri_y,e5-1), (151, c0)}. With the notation of Section 7, this amounts to
stating that the multiplier on I = {(¢,4),(¢,¢ + 1)} C Z/sZ x Z/sZ given by €. = 1 if r,c €
{0,...,7 — 1} and €. = —1 otherwise actually is an isometry on SII’. As €0€01 .. - €s_1s—1€s—10 =
(—1)2s=2/F1 = —1, this implies by Prop. 7.1(e) that p/2 € {1,2,...,s — 1}.

Suppose that I enjoys #;. We claim that for every finite F' C I there is a finite G C I such
that every closed walk P ~ (a,f) of length 2k in I satisfies quI\G Bq — ag = 0. This signifies
that given a closed walk (vo,...,v25—1) and 0 = ag < by < *++ < Gy < by, < @y1 = 2k such that
Vags- V-1 € I\ G and vp,, ..., V4, , -1 € F,

{iE {0,...,m} : a;,b; even} = {iE {0,...,m} :a;,b; odd}.
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Suppose that this is not true: then there is an s < k, there are 0 = ag < by < -+ < @y < by, < 28

and there are cycles (ugo, s U 15 Ubgy ey Vag—Ty e vy Ug yeve s U 13Uy e ,U2s—1) such that the
(vM)n>0 are injective sequences of vertices and b; — a; is even for at least one index i: let us suppose
so for i = 0. If by — ag > s — 1, consider the path P = (vpy, ..., Vag—1,000 -V, _15Vbps---»V251)

of odd length 2s — 1 — (bg — ag); if bg — ap < s — 1, consider the path P = (vgs_l,vgo, . ,v,?o_l,vbo)
of odd length by — ag + 1. Then P can be completed with vertices outside any given finite set to a
cycle of length at most 2s because (vas—1,v s Ve 1 U, ) is a path of length by — ag + 1 in I for
every n. This proves that I fails _Z,.

The claim shows that I enjoys (%) in SP for p = 2k. In fact, if &€ € TFYU\G) is defined by ¢, = 1
for g € F and é¢, =¢ € T for ¢ € I\ G, then, with the notation of Th. 6.5,

n
ag) "

(I)FU(I\G) (g, a) — Z naﬁezqu\c ﬁq*aqaaaﬁ
(a,ﬁ)EWkFU(I\G)

does not depend on ¢, so that ||z + eyl|lax = ||z + yl|2x if * € S¥ and y € S?’\“G, and S?* has complex
(muap) by Th. 10.7(b) = (). O

Remark 10.11. This theorem is a noncommutative analogue to [63, Th. 7.5].

11 Examples

One of Varopoulos’ motivations for the study of the projective tensor product ¢ (%EOO are lacunary
sets in a locally compact abelian group.

Let I be a discrete abelian group and A C I'. Let us say that A is n-independent if every element
of I' admits at most one representation as the sum of n terms in A, up to a permutation. For example,
the geometric sequence {j*}r>o with j € {2,3,...} is n-independent in Z if and only if j > n [63,
§3]. If A is n-independent for all n, then A is independent. Let

Zn={Ce€Z":> ¢,=0and Y |¢]< 20

yEA yEA

and Z = |JZ,. Then A is n-independent if and only if, for every ¢ € Z,,

YD Gr=0= (=0

YEA

and A is independent if and only if this holds for every ¢ € Z.

Let us say that A is n-independent modulo 2 if in every representation of an element of I" as the
sum of n terms in A, each element of A appears the same number of times modulo 2. In other words,
for every ¢ € Zy,,

Zngo = VyeA (=0 (mod?2);
yEA

A is independent modulo 2 if this holds for every ¢ € Z. If I" contains no element of order 2, then one
may always suppose that at least one coefficient (, of a nontrivial relation > ¢,y = 0 is odd, so that
these two latter notions “modulo 2”7 coincide with the two former ones.

Let G = f, so that T" is the group of characters on G. Then the computation presented in [63,
Prop. 2.5(i7)] for the case I' = Z shows that A is a complex (vs. real) 1-unconditional basic sequence
in LP(G) with p € 2N* if and only if A is p/2-independent (vs. modulo 2). Furthermore A is a complex
(vs. real) 1-unconditional basic sequence in LP(G) with p € (0, 0o]\ 2N* if and only if A is independent
(vs. modulo 2). If T contains no element of order 2, then a real 1-unconditional basic sequence in
LP(G) is also complex 1-unconditional. All these results hold also for the complete counterparts to
1-unconditional basic sequences.

Results on lacunary sets in a discrete abelian group transfer to lacunary matrices in the following
way, as in [98, Th. 4.2].
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Proposition 11.1. Let ' be a discrete abelian group and R, C be countable subsets of I'. To every
A C R+ C associate Iy = {(r,c) e RxC:r+ceA}. Let G=T.

a is a compler 1-unconditional basic sequence in , then I is a I-unconditional basic
If A i lex 1 ditional bast in LY(Q), then Iy is a 1 ditional bast
sequence in S*.

(b) Suppose that each element of T' admits at most one representation as the sum of an element of R
with an element of C. Then every I C RxC has the form I = Iy with A ={r+c: (r,c) € I}. If
A is a real 1-unconditional basic sequence in LP(G), then I is a I-unconditional basic sequence
in SP.

(c) Let p = 2k be a positive even integer. Suppose that RN C = 0 and RU C is k-independent
modulo 2. Iy is a 1-unconditional basic sequence in SP if and only if A is a real 1-unconditional
basic sequence in LP(G).

Proof. (a). Let P = (¢,r,c',r") be a closed walk in I5. Then r+¢, 7' + ¢, r+ ¢ and ' + c are in A
while (r+¢)+ (' + ) = (r+¢) + (v’ + ¢): if A is 2-independent, then r +c € {r + ¢, + ¢}, so
that ¢ = ¢’ or r =7’ and P is not a cycle.

(b). For each v € A, let ¢, = (r,,cy) be the unique element of I such that r, + ¢, =~. If A is
a real 1-unconditional basic sequence in LP(G), then it is also a complete real 1-unconditional basic
sequence in LP(G). Let ¢ € {—1,1}4, so that ¢, € {—1,1} for all v € A. Then, as in Eq. (B.6),

|3 aaed]
ISIIN

H Z r(g)e(g)arcere

S 87 e ST, 57
= 1> a4,04,7(9) =D a4, €0,
vEA s7 (87 llyea LE (G,8P(8P))

so that as in Eq. (2), by complete real 1-unconditionality of A in L?(G),

H Z PqlqCq = H Z ageq

oo
TN LE(G.SP(SP))  gel, ST, (57)

St (sp) N H P e )
In vEA

(¢). Each element of T' admits at most one representation as the sum of an element of R with
an element of C, so that (b) yields sufficiency. Suppose that A is not a real 1-unconditional basic
sequence in LP(G) and let ¢ € Zy such that > ) ¢y =0and J = {(r,¢) € I5 : (4c # 0 (mod 2)}
is nonempty; J has at most 2k elements. Let P = (vi,...,v;) be a path in J of maximal length.
Then Cy, 4o, is odd and Y {{y;4v : v; +v € A} is even because it is the coefficient of v; in the
relation > 4eaGyy=0and RU C' is k-independent modulo 2. There is therefore v;; distinct from
vj_1 such that ¢, 1o,,, is odd. As j is maximal and RNC = 0, vj41 = vjp1-2; for some 2 < i <k,
so that (vj41-2i,...,v;) is a cycle of length 2¢ in J: I, is not a l-unconditional basic sequence in
SP. O

Let R and C be any countable sets. Consider G = {—1,1}¢ x {—1,1}£. If we denote by ((€:)cec

(e).)rer) a generic point in G, then the set of Rademacher functions {e.}cec U {€,}rer is a real

1-unconditional basic sequence in C(G), so that it is independent modulo 2 in G. Similarly, the set
of Steinhaus functions {z.}.cc U {z.},cr is independent in the dual of T¢ x TF. This yields:

Corollary 11.2. Let I C R x C and p € (0,00|. The following are equivalent:

- I is a I-unconditional basic sequence in SP.

— {ecel : (r,c) € I} is a real 1-unconditional basic sequence in LP(G).

~ {22! : (r,¢) € I} is a 1-unconditional basic sequence in LP(TC x TT).
Remark 11.3. The isomorphic counterpart is also true: I is a completely unconditional basic sequence
in SP (i.e., a complete o(p) set) if and only if {ece; : (r,¢) € I} is a completely unconditional basic
sequence in LP(G) (a A(p)er set in G, see [37] and [77, §8.1],) if and only if {z.z. : (r,c) € I}
is a completely unconditional basic sequence in LP(T¢ x T%). This follows e.g. from the proof of
Prop. 11.1(b) and the iterated noncommutative Khinchin inequality [77, Eq. (8.4.11)].
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Harcharras [37] used Peller’s discovery [74] of the link between Fourier and Hankel Schur multi-
pliers to produce unconditional basic sequences in SP that are unions of antidiagonals in N x N. We
have in our context the rather disappointing

Proposition 11.4. Let ACNCZ and I = {(r,c) e NxN:r+ceA}.

(a) I is a 1-unconditional basic sequence in S* if and only if {2 }xea is a I-unconditional basic
sequence in L*(T).

(b) If A contains three elements A < p < v such that A+ p > v, then I is not a 1-unconditional
basic sequence in SP if p € (0,00] \ {2,4}.

(¢) If A = { Mg} with Agy1 > 2Xg for all k, then I is a I-unconditional basic sequence in SP for
every p.

Proof. (a). Sufficiency follows from Prop. 11.1(a) with R = C' = N. Conversely, if A contains a
solution to A+ p = X 4+ ¢/ with A < X < ¢/ < p, then I contains the cycle (col0,row A, col ' —
A, row i').

(b). Consider the cycle (col0,row A, colv — A\;row . — v + A, col v — p, row p).

(¢). In fact, I is a forest. Let P = (¢1,71,...,¢k, k) be a closed walk in I. We may suppose
without loss of generality that r1 + ¢o is a maximal element of {rq +c¢1,r1 +c2,..., 7k + Ck, 76 + 1}
Then r1+c¢1 < r1+c2 and ro+c2 < 114 c2. One of these inequalities must be an equality and P is not
a cycle: for otherwise 2(r1 +c¢1) < r1+c2 and 2(r2+c2) < r1 + ¢ because r1 +c¢1,71 +co, 2+ 3 € A,
so that 2(r1 +¢1 + 72 + ¢2) < 2(r1 + ¢2) and ¢; +r2 < 0. O

Remark 11.5. Further computations yield the following result. If {2*} ¢ is a 1-unconditional basic
sequence in L(T) and if {\ < p < v} C A= A+ p <v, then I is a 1-unconditional basic sequence
in S8 the converse does not hold.

Let us now give an overview of the known extremal bipartite graphs without cycle of length
4,6,...,2k and their size. Look up [9, Def. 1.3.1] for the definition of a Steiner system and [56,
Def. 1.3.1] for the definition of a generalised polygon. An elementary example is given in the intro-
duction with (B.1).

Proposition 11.6. Let2<n<m, I CRXxC with#C=nand # R=m, and e = # 1.

(a) If I is a 1-unconditional basic sequence in S*, then

et () (5 )5 -),

that is e — me — mn(n — 1) < 0. Equality holds if and only if I is the incidence graph of a
Steiner system S(2,e/m;n) on n points and m blocks.

(b) If I is a 1-unconditional basic sequence in S°, then

2
ot () (50 G+ (- G-
m m n m n
that is €2 — (m+n)e? + 2mne —m?n? < 0. Equality holds if and only if I is the incidence graph

of the quadrangle (the cycle of length 8) or of a generalised quadrangle with n points and m
lines.

(¢) If I is a 1-unconditional basic sequence in S** with k > 1 an integer, then

k . .
e =1 /e L3)
> - - . .
S HE ) os
Equality holds if I is the incidence graph of the (k+ 1)-gon (the cycle of length 2k +2) or of a
generalised (k 4+ 1)-gon with n points and m lines.

Proof. By Theorem 9.1(b) = (g), I is a 1-unconditional basic sequence in S?*| with k > 1 an integer,
if and only if T is a graph of girth 2k + 2 in the sense of [44]. Therefore (a) and (b) are shown in [65,
Prop. 4, Th. 8, Rem. 10]. Inequality (B.18) is [44, Eq. (1)] and the sufficient condition for equality
follows from [56, Lemma 1.5.4]. O
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Consult [9, Tables Al.1, A5.1] for examples of Steiner systems and [56, Table 2.1] for examples of
generalised polygons. In both cases, the corresponding incidence graph is biregular: every vertex in
R has same degree s + 1 and every vertex in C' has same degree ¢t + 1. Arbitrarily large generalised
(k + 1)-gons exist only if 2k € {4,6,10,14} [56, Lemma 1.7.1]; for 2k € {6, 10,14}, it follows from
[56, Lemma 1.5.4] that

(st)(k+D/2 _q
st—1 ’

(st)k+D/2 _q

n=(s+1) "

m=(t+1)
Remark 11.7. Let I C R x C with # C = # R = n. Inequality (B.18) shows that if I is a 1-uncon-
ditional basic sequence in S%*, then # I < n'*Y* 4 (s — 1)n/s. If p ¢ {4,6,10}, the existence of
I-unconditional basic sequences in S?* such that # I = n'*/¥ is in fact an important open problem
in graph theory: extremal graphs cannot correspond to generalised polygons and necessarily have
less structure.
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Matrix inequalities with applications to the theory of
iterated kernels

with William Banks, Asma Harcharras and Eric Ricard.

Abstract

For an m x n matrix A with nonnegative real entries, Atkinson, Moran and Watterson proved
the inequality s(A4)® < mns(AA*A), where A" is the transpose of A, and s(-) is the sum of the
entries. We extend this result to finite products of the form AA*AA" ... A or AA'AA* .. A* and
give some applications to the theory of iterated kernels.

1 Introduction

For any matrix A, let s(A) denote the sum of its entries. For any integer k > 1, we define
A(Qk) — (AAt)k, A(2k+1) — (AAt)kA,
where A? denotes the transpose of A. In Section 2, we prove the following sharp inequalities:

Theorem 1.1. Let A be an m xn matriz with nonnegative real entries. Then for every integer k > 1,
the following matrix inequalities hold:

S(A)Qk: < mkflnks(A(Qk))’ S(A)QkJrl < mknks(A(%Jrl)).

For the special case of symmetric matrices, this theorem was proved in 1959 by Mulholland and
Smith [60], thus settling an earlier conjecture of Mandel and Hughes [57] that had been based on the
study of certain genetical models. For arbitrary matrices (with nonnegative entries), Theorem 1.1
also generalises the matrix inequality

s(A)® < mns(AA'A),

which was first proved in 1960 by Atkinson, Moran and Watterson [3] using methods of perturbation
theory.

Theorem 1.1 has a graph theoretic interpretation when applied to matrices with entries in {0, 1}.
Let G be a graph with red vertices labeled 1, ..., m and blue vertices labeled 1, ..., n such that every
edge connects only vertices of distinct colours: G is a bipartite graph. Its reduced incidence matrix
is an m x n matrix A such that a; ; = 1 if red vertex ¢ is adjacent to blue vertex j, and a;; = 0
otherwise. Then s(A) is the size of G, while s(A(*)) is the number of walks on G of length ¢ starting
from a red vertex, i.e., the number of sequences (vy,...,vs) such that vy is a red vertex and every
pair {v;,v;+1} is an edge in G. Theorem 1.1 then yields the optimal lower bound of the number of
walks in terms of the size of G. We do not know of a corresponding lower bound for the number of
trails (walks with no edge repeated) or paths (walks with no vertex repeated).

Recall that an m x n matrix A is said to be bistochastic if every row sum of A is equal to s(A4)/m,
and every column sum of A is equal to s(A)/n. In Section 3 we prove the following asymptotic form
of Theorem 1.1:

95
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Theorem 1.2. Let A be an m X n matriz with nonnegative real entries. If A is bistochastic, then
forallk>1,
S(A)2k _ Tnkflnlcs(A@k))7 S(A)2k+1 _ mknkS(A(QkJrl)).
If A is not bistochastic, then there exist constants ¢ > 0 and v > 1 (depending only on A) such that
forall > 1,
5(A)* < ey~ (mn)?s(AD).

As we show in Sections 2 and 3, both of the above theorems, though stated for arbitrary rectangular
matrices with nonnegative entries, follow from the special case of square matrices.

Theorem 1.2 has an immediate application. Atkinson, Moran and Watterson [3] conjectured that
for a nonnegative symmetric kernel function K (z,y) that is integrable (in a suitable sense) over the
square 0 < z,y < a, the inequality

/a/aKe(x,y)dxdy>#<]]K(z,y)dzdy>e (C.1)
00 00

holds for all £ > 1. Here K(x,y) denotes the ¢-th order iterate of K(x,y), which is defined recursively
by

Ki(z,y) = K(z,y), Ki(z,y) = /Kg_l(x,t)K(t,y)dt.

Beesack [7] showed that the Atkinson-Moran-Watterson conjecture follows from the matrix identi-
ties of Mulholland and Smith described above. Using Beesack’s ideas together with Theorem 1.2, we
prove in Section 4 the following asymptotic form of the Atkinson-Moran-Watterson inequality (C.1):

Theorem 1.3. Let K(z,y) be a nonnegative symmetric kernel function that is integrable over the
square 0 < z,y < a, and consider the function f(x f K (z,y)dy defined on the interval 0 < z < a.

If f(x) is constant almost everywhere, then for all £ >

O/GO/aKe(x,y)dxdy%</(1/aK(z,y)dzdy>e_

0 0

If not, there exist constants ¢ > 0 and v > 1 (depending only on K) such that for all £ > 1

//Kgxy) (//K:Cydxdy).

0
Remark 1.4. Using an approximation argument as in the proof of Theorem 1.3, Theorem 1.1 can be
also applied to establish an analogue to inequalities (C.1) and Theorem 1.3 in the case of nonsymmetric
kernel functions. Let K (z,y) be any nonnegative kernel function that is integrable on the rectangle
0<z<a,0<y<bandlet K, be the ¢-th order iterate of K defined by K;(x,y) = K(z,y) and for
each integer k > 1,

b
Kop(z,2") = /sz_1(w,y)K(fc',y)dy,

Kot () = / o (z, 2') K (') do’

In this case, inequalities (C.1) become

a a

b 2k+1
//K%H z,y)dzdy > s (//K z,y dxdy)
0

0
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: a b 2%
//KQk(Z',:L'/)d:CdZ'/ =y 1bk <//K z,y dzdy) .
0

0 0

The analogue of Theorem 1.3 is then obvious.

2 Matrix inequality

Given a matrix A = (a; ;) and an integer ¢ > 0, we denote by al(.? the (i,)-th entry of A®), so that
A®) = (az(-? ). This notation will be used often in the sequel.

Lemma 2.1. Let B = (b; ;) be a d x d matriz with nonnegative real entries. For any two sequences
{a;} and {B;} of nonnegative real numbers, the following inequality holds:

d d
1 2
(I3) : Z @ifibij < d? (Z : ]2bz(,]))

ij=1 ij=1

Proof. To prove the lemma, we apply the Cauchy-Schwarz inequality twice as follows:

d d i d 1
Z a;Bibij = Z @ifibiy < d3 <Z (Zaiﬂibi,k)2> : (C.2)
k=1 = i=1

i,j=1 ik=1
d L/ d 3
Yo aifibi; <dz ( > O‘iajﬂiﬂjbi,kbj,k>
3,j=1 1,J,k=1
if & @)
=d> ,21 aiajfBiBjb;
i,j=
& (2)\ L (2)\1 2
=d> _Zla16j(bi,j)2 aJBZ(b]z)Q
)=
1
4 1
< d%< )y afﬂ?bf?) 2
52 371,
Here we have used the fact that B?) = BB? is a symmetric matrix. o

Theorem 2.2. Let B = (b; ;) be a square d x d matriz with nonnegative real entries, and let {c;} be
any sequence of nonnegative real numbers. Then for each integer £ > 1, we have

d d
£—1 Y
(Ig) : E Oéibiyj <de < E fbgd))

i,j=1 i,j=1

Proof of Theorem 2.2. The case ¢ = 1 is trivial while the case { = 2 is a consequence of the
lemma above. We prove the general case by induction. Suppose that p > 2, and the inequali-
ties (I1), (I2),...,(Ip) hold for all square matrices with nonnegative real entries. If p = 2k — 1 is

an odd mteger then the inequality (Ip+1) follows immediately from (I) and (I;). Indeed, since
Bk = BA®) e have

d N\ %
3 a —(Z afbfj) <d ( ( Z a2k 2"’“)) ’“) (C.3)
ij=1 i,j=1 i,j=1

Thus

B

d d
Z ;b ; < P < Z ka(%))

ij=1 ij=1
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If p = 2k is an even integer, then the inequality (I,+1) follows from Holder’s inequality, and the
inequalities (Ij) and (I3). Indeed, by Holder’s inequality, we have

(Zbu)

d

> o < at (3o’

ij=1

)—+ (C.4)

d
Let Z denote the term between parentheses, and set 5; = > b; ; for each i. Then

j=1
d d 2k+1 d
7= 0 (S) T = 3 o e,
i=1 j=1 i,j=1
Applying (1), it follows that
I<d ™ <Z a; ﬂ2b(k))

+
Applying the lemma to the sequences {a 2} and {ﬁ }, and using the fact that B*)(2) = Bk e
see that

2%
(Z a2k+1ﬁjb(2k ) .

7,j=1

I<d™ (dz( Z a2+ gp M) ) — 4"

i,j=1

Putting everything together, we have therefore shown that

d 2k+1
Z aibi,g < d2k+1 (Z a%Hﬁ]b(% ) )

i,j=1 4,j=1
Finally, note that
d
k) k k k
S = 3= 3 o = 3
(=1 J,4=1

since BZF+1) = B2k B Consequently,
> aibiy < dw (Z a?kﬂbz('?jkﬂ)) (C.5)
4,j=1 ,j=1
and (Ip4+1) holds for the case p = 2k. Theorem 2.2 now follows by induction. O
Proof of Theorem 1.1. For the case of square matrices, Theorem 1.1 follows immediately from Theo-
rem 2.2. Indeed, taking o; = 1 for each ¢, the inequality (I;) yields the corresponding inequality in
Theorem 1.1.

Now, let A be an m x n matrix with nonnegative real entries, put d = mn, and let B be the d x d

matrix with nonnegative real entries defined as the tensor product B = A ® J,, y,, where J,, ,, is the
n X m matrix with every entry equal to 1. For any integers ¢, k > 0, the relations

BO = A0 g0, s(BO) = s(AD)s(70,),
S(J(%)) _ mknk-i-l S(J(2k+1)) _ mk+1nk+1.

are easily checked. In particular, s(B) = mns(A). Applying Theorem 1.1 to the matrix B and using
these identities, the inequalities of Theorem 1.1 follow for the matrix A. O
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3 Asymptotic matrix inequality

As will be shown below, Theorem 1.2 is a consequence of the following more precise theorem for
square matrices:

Theorem 3.1. Let B be a square d x d matriz with nonnegative real entries and s(B) # 0. Let \
be the largest eigenvalue of B® = BB, and put v = A\d?/s(B)%. Then v > 1, and there exists a
constant ¢ > 0 (depending only on B) such that for all integers £ > 0,

s(B)" < cv_%de_ls(B(é)). (C.6)

Moreover, the following assertions are equivalent:

(a) v=1,

(b) s(B)* = d*'s(B®) for every integer £ > 0,
(¢) s(B)t = d*~'s(B®) for some integer £ > 3,
(d) B is bistochastic.

Proof. We express B®) = BB in the form B?) = U*DU, where U = (u; ;) is an orthogonal matrix,
and D is a diagonal matrix diag(A1,...,Aq) with Ay > ... > Ay > 0. Here A = A;. For each
v=1,...,d,let E, be the projection matrix whose (v, v)-th entry is 1, and all other entries are equal
to 0. Put A, = U'E,U for each v. Then for all integers k > 0,

d d
B2k — Z A, B2k+1) _ Z AL B.
v=1 v=1
By a straightforward calculation, we see that for each v
d 5 d d
s(A,) = (Zu) . s(A,B) = <Z u)( 3 uyykbkyj). (C.7)
i=1 i=1 Jk=1

In particular, s(4,) > 0. By Theorem 2.2, it follows that

d
s(B)? (2)
¥ < s(BY¥) = }:1 Avs(4,) < A}le(Al,) = Ad. (C.8)
A\d? .
Therefore, v = e > 1. Now, from the definition of v, we have
S

Vis(B) A
d=1s(BW) — "s(BW®)

Then, in order to show inequality (C.6), we will show that the A2 /s(B®) are bounded above by a
constant that is independent of £. Indeed, let C; = B®) /s(B®) for every £ > 0. Since each C; has
nonnegative real entries, and s(Cy) = 1, the entries of Cy all lie in the closed interval [0, 1]. Thus the
entries of the matrices UC2,U? and UCa,1B!U! are bounded by a constant that depends only on
B. Noting that for each nonnegative integer k, we have

Dk Dk+1

t trrt _
UCQkU - S(B(Qk)), U02k+1B U" = S(B(Qk_,’_l))v

and on examining the (1,1)th entry for each of these matrices, we see that A*/s(B(*) and A\F+1/
s(B (2k+1)) are both bounded above by a constant that is independent of k. Consequently, inequality
(C.6) holds.
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(a)=>(b): If v = 1, then A\d = s(B)?/d, hence from (C.8) we see that s(A,) = 0 whenever )\, # .
By (C.7), we also have that s(4,B) = 0 whenever )\, # A. Thus

Vi, =
k 2 k S(B)Qk
=AY s(Ay) = Nd = =
v=1
d
s(BPFD) =3 "AFs(A4,B) =\ Y s(A,B)
v=1 v:IAL=A
d
S(B)Qk-l-l
=M\ " s(4,B) = \s(B) = e
v=1

(b)=>(a): If (b) holds, then inequality (C.6) implies 1 < ¢y~ % for some v > 1 and all integers
¢ > 0. This forces v = 1.

(b)=(c): Trivial.

(¢)=(d): Suppose that £ = 2k + 1 > 3 is an odd integer such that s(B)* = d’~'s(B®). Ta-
king every a; = 1 in the proof of Theorem 2.2, our hypothesis means that equality holds in (C.5),
hence (C.4) must also hold with equality:

d d d 2k+41 %
> by = dze (Z (Zbi,j) . ) .

ij=1 i=1  j=1

By Hoélder’s inequality, this is only possible if all of the row sums of B are equal. Since ¢ is odd and
s is transpose-invariant, we also have

S(Bt)l _ dlfls((B(é))t) _ dlfls((Bt)(é)).

Thus all of the row sums of B? are equal as well, and B is bistochastic.

Now suppose that £ = 2k > 4 is an even integer such that s(B)’ = d*~'s(B®). By taking every
a; = 1 in (C.3), we see that s(B)? = ds(B®). Then, taking every a; = ; = 1 in the proof of the
lemma, we see that equality holds in (C.2) which is only possible if all of the column sums of B are
equal. Therefore s(BA) = s(A) for every d x d matrix A, where 8 = s(B)/d is the sum of each
column of B. In particular,

S(B)é — d@—ls(B(é)) _ d@—lﬁs((Bt)(f—l))
_ d@*lﬂs((B(lfl))t) _ dl*l/BS(B(Efl))7
thus s(B)~! = d*~2s(BY~Y). Since ¢ — 1 is odd, we can apply the previous result to conclude that

B is bistochastic.
(d)=(b): Suppose B is bistochastic, with every row or column sum equal to 5 = s(B)/d. For any

d x d matrix A, one has s(AB) = 3s(A) and s(AB?) = Bs(A). In particular, s(BZ++1)) = 3s(B(2k))
and s(B®F*2)) = Bs(B2k+D) for all k£ > 0. Consequently,
s(B)*
=1
This completes the proof. O

s(BY) = p*~15(B) =

> 0.

Corollary 3.2. Let B be a square d x d matriz with nonnegative real entries and s(B) # 0. Let §;
be the j-th column sum of B for each j, and put

d

1 2
5:1+28(—B)2 Z(ﬂzfﬂj)

i,j=1
Then there exists a constant ¢ > 0 (depending only on B) such that for all £ > 0, we have

s(B)! < e 5d" " s(BW).
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Proof. Note first that for any d x d matrix B, if 5; denotes the j-th column sum of B, then it is
easily seen that

9 d
a8 = 2B LS 52 (©9)

3,7=1

Using the notation of Theorem 3.1 and applying the relations (C.8) and (C.9), we have

A? _ ds (B<2>)
"= 5BE 7 HBY 25(B)? Z

The corollary therefore follows from (C.6). O

Proof of Theorem 1.2. Given an m X n matrix A with nonnegative real entries, we proceed as in the
proof of Theorem 1.1: put d = mn, and let B = A® J, . Note that A is bistochastic if and only if B
is bistochastic. Applying the corollary above to B, Theorem 1.2 follows immediately for the matrix
A. The details are left to the reader. O

4 Asymptotic kernel inequality

Proof of Theorem 1.3. By changing variables if necessary, we can assume that a = 1. For simplicity,
we will also assume that K (z,y) is continuous. Consider the function f(x) defined by

1
/nydy, x € [0,1].
0

If f(x) is a constant function, then since K (x,y) is symmetric, the equality

1

11
//Kgacydxdy—(//l(xydxdy)
00

0

for all £ > 1 follows from an easy inductive argument.
Now suppose that f(z) is not constant, and let m and M denote respectively the minimum and
maximum value of f(x) on [0,1]. Choose € > 0 such that 4 < M — m. For every integer d > 1, let

%i[d] be the open interval

W) e

and let %[d] be the rectangle 62/ X ?/j[d] for 1 <i,j < d. Let K9(z,y) be defined on [0,1] x [0, 1]
as follows:

min {K(s,t) (s, t) € 02/1[';]} if (z,y) € ?/l[f] for some 1 <i4,j <d
K(z,y) otherwise.

Here 02/1[;1] denotes the closure of 02/1[31} Noting that K!¥(z,vy) is constant on each rectangle %[?], let
Big) be the d x d matrix whose (i, j)-th entry is equal to K (02/1[?]) Let Kéd] (x,y) denote the ¢-th
order iterate of K14 (x,y) for each £ > 1. Then
1
d d [d]
Kw@m:/@L@mWM E/Kl JE(t,y) de.
0 1% (@

It follows by induction that K éd] (z,y) is also constant on each rectangle 62/1{?], and

d
1 4 ¢ [d]y.
i,j = E ; % (%k,j)a
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1
by induction, this is the (4, 5)- = B[((f]) In other words,
1
@ﬁ%%ﬁﬂzd 8. forallf,d>1. (C.10)

Now since f(x) is continuous, we can choose d sufficiently large such that for some integers 1 <
im, iy < d, we have

flz) <m+e, for all x € %Ei],

flx) > M —¢, for all z € %,

(37

Taking d larger if necessary, we can further assume that
0< K(z,y) — K (z,y) <e
for all 0 < z,y < 1. Fixing this value of d, we define

52

2d2(f lkfx Ly dxdy) |
00

y=1+

Finally, since y~7 < 1, we can choose e sufficiently large so that K¢ (x,y) > IK (x,y) for all
0 < z,y < 1. For this value of e, we therefore have

11 11
//K[dexydxdy>7 i//Kacydacdy
0 0 0 0

By the corollary to Theorem 3.1 applied to the matrix Bg, there exists a constant ¢ > 0, which
is independent of ¢, such that

S(B[de]) <oz (de) (B[(ﬁi])

for all integers £ > 0, where

de
1 2
§=14+—-=> (Bueli — Baes) -
%G%@Qg; J

Here fB4e),; denotes the j-th column sum of By for each j. We now claim that § > v. Granting this
fact for the moment, we apply (C.10) to K%(z,y) and obtain:

11 11
//Kg T,y dxdy}//Klgde](x,y)dxdy E Z [de( de])
00 0

3,7=1

0
1 0 1l g 20 ‘
= (de)eHS(B[de]) > 107 (de)™*s(Blae)
1 de 11 14
- 15%(@1 7 2 K () > 5[ [ asan)
= 0 0
1 1

mp\

Bl
VS
o .

1

‘

/Kwydxdy)>c é(//Kﬂﬁydmdy).
0 0

0

This completes the proof of the theorem modulo our claim that § > ~. To see this, let ¥ be any
interval of the form %[de} such that ¥ C %Ef]. Note that there are e such intervals. Since Bl? is
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a symmetric matrix, the column sum 4,y of B4 corresponding to the interval ¥ is equal to the
“¥-th” row sum, which can be bounded as follows:

de

1
Blde),v = ZK[de (v, % de]) (de) //Kde] z,y) dydz
0
1

j=1
(de)? K(z,y)dydz = (de)?® [ f(z)dz < de(m +¢).
][ /

Similarly, let # be any interval of the form %[de] such that % C %E\i}. Again, there are e such
intervals, and by a similar calculation, the column sum B4 » satisfies the bound

de
e de
Buaew =3 KW (0, /") > de(M — 2¢).
j=1
Thus 4
2

Z (Btael,i = Biael.s) Z el w — Blae,y)” > de* (M —m — 32)? > d®e'c?
irj=1 o

On the other hand, we have

1
S(B[de = 2/
0

and the claim follows. O

o _

11
Kl (2, y) dxdy < 6)2//K(x,y)dxdy,
00

Keywords. Matrix inequality, iterated kernel.
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The size of bipartite graphs with girth eight

Abstract

Reiman’s inequality for the size of bipartite graphs of girth six is generalised to girth eight. It
is optimal in as far as it admits the algebraic structure of generalised quadrangles as case of
equality. This enables us to obtain the optimal estimate e ~ v*/3 for balanced bipartite graphs.
We also get an optimal estimate for very unbalanced graphs.

1 Introduction

De Caen and Székely recently proposed a new bound for the size of a bipartite graph of girth eight,
that is a bipartite graph without cycle of length four and six. We adapt their method to obtain the
following cubic inequality.

Theorem 1.1. Let G be a bipartite graph on v + w vertices.
(1) If G contains no cycle of length 4 and 6, then its size e satisfies

e3 — (v +w)e? + 2vwe — v2w?* 0.
(ii) If v > |w?/4], then furthermore e < v+ [w?/4].

Part (i) is the right generalisation of Reiman’s inequality for bipartite graphs of girth 6 (see
Prop. 3.1) to girth 8. It is optimal in the sense that it is an equality for all known extremal graphs
constructed via finite fields. Part (ii) describes the case of very unbalanced bipartite graphs and is
optimal: there is a graph, constructed by hand, for which it is an equality.

Let us give a brief description of this article. Section 2 describes a way to translate uncoloured
graphs into bipartite graphs and its converse. This permits to get two propositions on very unbalanced
graphs.

Section 3 summarises facts about bipartite graphs of girth six that should be folklore and well
known although I did not see them printed.

Section 4 is the core of the paper. We adapt an inequality of Atkinson et al. to get an optimal
lower bound on the number of paths of length 3 in a bipartite graph (Cor. 4.6). This enables us to
bypass the final step in the proof of [20, Th. 1] and to get our theorem.

2 Uncoloured graphs and bipartite graphs

Expanding a graph to a bipartite graph
We propose the following construction of a bipartite graph out of an uncoloured graph. Let G’ be an
uncoloured graph with set of vertices V. Then the bipartite graph G is defined as follows:

— the first class of vertices of G is V;
— the second class W of vertices of G is the set of edges of G;
— the set of edges of G is { {z,y} : y is an edge of G’ with endpoint z }

Thus every vertex of W has degree 2 and the size of G is twice the size of G'.

64



3. BIPARTITE GRAPHS OF GIRTH SIX 65

Contracting a bipartite graph to an uncoloured graph

Let us describe an inverse construction. Let G be a bipartite graph with colour classes V and W.
Let G’ be the following graph:

— its set of vertices is V/;

~ its set of edges is { {z,2} C V : 3y {z,y} and {z,y} are edges of G }.

The size of G’ is at most half the size of G. If G contains no cycle of length 4, then, given {z, z},
there is at most one y such that {z,y} and {z,y} are edges of G, so that the size of G’ is exactly

£ ()<()

(We recognise here [11, Inequality (2), p. 310] for s =t = 2.) Thus each vertex y € W of degree at
least 2 contributes at least 1 to sum (D.1). This yields

Proposition 2.1. Let G be a bipartite graph on v + w wvertices that contains no cycle of length 4.
(i) If w> (3), then there are at least w — (3) vertices in W of degree 0 or 1.
(ii) If its minimal degree is at least 2, then w < (;) and v < (g’)

If G contains no cycle of length 4 nor 6, then G’ contains no triangle and its size is at most [v?/4].
This argument proves

Proposition 2.2. Let G be a bipartite graph on v + w vertices that contains no cycle of length 4 or
6.

(i) If w > [v?/4], then there are at least [w — v? /4] vertices in W with degree 0 or 1.
(i1) If its minimal degree is at least 2, then w < [v?/4] and v < [w?/4].

3 Bipartite graphs of girth six

The following estimate is well known as Reiman’s inequality, but its cases of equality were not written
down explicitly. Reading the proof of [11, Th. VI.2.6], one gets with [9, Def. 1.3.1]

Proposition 3.1. Let v < w. A graph of girth at least 6 on v 4+ w vertices with e edges satisfies

O(v,w,e) = e* —we —vw(v —1) <0

e < Vvw(v — 1) +w2/4+w/2.
We have equality if and only if it is the incidence graph of a Steiner system S(2,k;v) on v points
with block degree k given by wk(k —1) =v(v —1).
Note that by symmetry, we also get O(w, v, e) < 0, but this is superfluous by
Lemma 3.2. Let v < w. Let e be the positive root of X? —vX —vw(w — 1). Then O(v,w,e) > 0.

Proof. As (vw)? — vow — vw(w — 1) = vw(vw — v —w + 1) > 0, we have e < vw. Therefore

2

e? —we —vw(v —1) = €2

—ve —vw(w —1) 4+ (v —w)e + vw(w — v)
=(vw—e)(w—v)=0. U

Remark 3.3. The case of equality in Prop. 3.1 may be described further as follows. By [9, Cor. 1.2.11],
every vertex in V has same degree r and every vertex in W has same degree k with

k—1|v—Tand k(k—1)|v(v—1), (D.2)

sothat v =1+r(k—1) and k | r(r — 1). For given k, this set of conditions is in fact sufficient for the
existence of an extremal graph for large r: this is Wilson’s Theorem [9, Th. XI.3.8]. For example, we
have the following complete sets of parameters (v, w,r, k):

I4+rk—=1),r(Q+rk—1))/k,r k) for 1<k <5and k| r(r—1).
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The first set of parameters satisfying (D.2) for which an extremal graph does not exist is (36,42,
7,6). Consult [9, Table A1.1] for all known block designs with » < 17. [9, Table A5.1] provides
the following sets of parameters (v, w,r, k) for block designs: given any prime power ¢ and natural
number n, given ¢ < s,

(qn qn—lqn_l qn_l ) (qn-l-l_l qn+1_1qn_1 qn_l q+1)
) q—l,q—l’ ) q—l ) q271 q—l’q—l, )

(@ + 1@ —q+1),¢%g+1), (277 =25 +2° (2 +1)(2° —2°7" +1),2° +1,2) .
The following proposition provides a simpler but coarser bound.

Proposition 3.4. Let G be a bipartite graph on vertex classes V. and W with #V = v and #W = w
without cycles of length 4. Its size satisfies

. 2ow(v—1)  fw<o(v—1)/2
v(v—=1)/24+w otherwise.

We have optimality in the second alternative for the bipartite expansion of a complete graph on V as
described in Section 2, on which we add w — v(v —1)/2 new edges by connecting any vertex of V to
w —v(v—1)/2 new vertices in colour class W.

Proof. By Proposition 2.1, if w > v(v — 1)/2, then w — v(v — 1)/2 vertices in W have degree 0 or 1.
If we remove them, we remove at most w — v(v — 1)/2 edges and the remaining graph has at most
v(v — 1) edges because O(v,v(v — 1)/2,v(v — 1)) = 0. The first alternative follows from

O, w, /2ow(w — 1)) = wy/v(v — 1)(V/v(v — 1) — V2w). O

4 Bipartite graphs of girth eight
Statement of the theorem
Consult [56, Def. 1.3,1] for the definition of generalised polygons.

Theorem 4.1. Let G be a bipartite graph on vertex classes V. and W with #V = v and #W = w.
If G contains no cycle of length 4 or 6, then its size e satisfies

P(v,w,e) = e — (v+w)e? + 2vwe — v*w? < 0. (D.3)

We have equality exactly in two cases:
(1) if G is the complete bipartite graph and v =1 or w =1;
(1i) if G is the incidence graph of a generalised quadrangle.

Remark 4.2. Let us first note that this polynomial has exactly one positive root in e for positive v, w.
It suffices to this purpose to show that its discriminant is negative. This is —v?w?D with

D:27p2+4s3—36sp—4s2+32p, s =v+w, p=ovw.

Let us study this quantity for s > 2, p > s — 1. We have

dD
%:54p7365+32>54p—36(p+1)+32:18p—4>0,

so that its minimum satisfies p = s — 1, which implies D = (45 —5)(s — 1) > 3. Therefore Inequality
(D.3) is equivalent to an inequality of form e < e(v, w).
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Remark 4.3. The case of equality in Th. 4.1 implies the following: every vertex in V' has same degree
s+ 1 and every vertex in W has same degree ¢t + 1. By [56, Cor. 1.5.5, Th. 1.7.1], s + ¢ | st(1 + st)
and

v=>0t+1)(1+st), w=(s+1)(1+st), e=(s+1)(t+1)(1+ st).

Let us suppose, by symmetry, that s < ¢t. If s = 0, we get case (). If s = 1, we obtain exactly the
examples of extremal graphs produced by de Caen and Székely: W consists of ¢ + 1 horizontal lines
and as much vertical lines and V is the set of (¢ + 1) intersection points and G is the point-line
incidence graph of this grid (this is also the bipartite expansion of a complete bipartite graph on
(t4+ 1)+ (t 4+ 1) vertices.) Otherwise s,t > 2 and G is in fact the incidence graph of a generalised
quadrangle, so that by [56, Th. 1.7.2], t < s2. Let q be a prime power. Then there are generalised
quadrangles with set of parameters (s,t) any of (¢,9), (¢.¢%), (¢%,¢*), (¢ — 1,¢ + 1); all known ones
fit in this list. In particular, by [56, Th. 1.7.9], if t > s = 2, then ¢ = 2 or t = 4 and in each case there
is exactly one extremal graph. By [56, Sec. 1.7.11], if ¢ > s = 3, then there is a (unique) extremal
graph exactly if ¢t = 3,5,9. There is a unique extremal graph with s = ¢ = 4. It is open whether
there exists a generalised quadrangle with s =4 and ¢t € {11,12}.

A generalisation of an inequality of Atkinson et al.

We first need an optimal lower bound on the number of paths of length 3. Let us prove the following
inequality.

Theorem 4.4. Let (a;j)1<i<v,1<j<w b€ a matriz of nonnegative coefficients and p,~v > 0. Let
w v n v
Qi = D Gigs @ay = D iy €= > iy, (D-4)
j=1 i=1 i=1 j=1
If a = 2p and a,; = 2, then
v w
0= 3D aisai = p)aw; =) > ele/v = p)le/w =), (D5)
i=1 j=1
equality holding exactly if a;. and a.; are constant.
This refines the inequality in [3], which states
v w
Y= Z Zaijai*a*j > e Jvw (D.6)
i=1 j=1

as, by the Arithmetic-Quadratic Mean Inequality,
G-V =7 al —pY_al;+pye < e(—ve/v—pe/w+ py) (D.7)
i=1 j=1

Remark 4.5. If v = w and a is diagonal, Inequality (D.6) is the Arithmetic-Cubic Mean Inequality
and Inequality (D.5) becomes

1o ee—vpe—v
Zzaii(aii —p)ai—7) = = P ,Y,
i=1

v v v

which is true by Chebyshev’s Inequality [39, Th. 43] if a;; > p and a;; > «. For our “non commutative
Chebyshev Inequality”, the conditions a;. > 2p and a,; > 2v cannot be weakened to a;, > p and
a.j = v, as we have the following counterexamples:

s s (011
L o)(r oo
100
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Proof. If (D.5) is an equality, then so are (D.7) and (D.6) and our case of equality follows from the
identical case of equality in [3], whose proof we now imitate. We shall suppose that a; > 2p or
axj > 27, so that the whole inequality follows by continuity. Fix e and suppose that under this
condition the a;; are chosen so to minimise ¢. We may suppose that the rows and the columns have
been permuted such that the sequences (a;,) and (a4;) are nondecreasing:

al*g"'gau*, Ayl < 0 < Aoy (Dg)

If one of these sequences is constant, the inequality follows by the Arithmetic-Quadratic inequality
(and the case of equality is easy). Let us suppose that this is not so.

One can suppose that ay,, and a,; are positive. Let us show the argument for ay,. If a1, = 0,
there are k,l such that aix,a;, > 0. Make a perturbation by adding o to ai, and to aj;, and
subtracting o to a;x and to a;,. The row and column sums a;, and a,; are unaltered and ¢ increases

of
Ap = af(ars — p)(aww —7) + (ax — p)(aur —7)
(a1 = p)(aur — ) = (a1x — p)(@am — 7))
A1 Owry + Al — A1 lxfe — al*a*w)

Aix — al*)(a*w - a*k);

= «

(
(

\
o

so that ¢ does not increase.
Now make the following perturbation: add 2« to a1 and subtract « to a1, and to a,;. Let us
compute the differential of ¢: as

d v w
da(b = (s = P)ase =) + D tic(aic — p) + > arj(as; —7),
re i=1 Jj=1
dp — d¢  do
= 2 — —
d¢ da( da11 dalw davl)

= da((al* = P)@x1 = Q) + (a15 = Qp)(@s1 — ) + Zail(ai* —p)
+ Z arj(aw; —7) — Z Aiw (@ix — p) — Z Avj(axj — 7))

For positive da, we have by (D.8)
dp < da((al* - p)(a*l - a*w) + ((11* - au*)(a*l - ’Y) + @z (a'u* - P)
+ @14 (A = ¥) = Qs (@14 — P) — Qo (a1 — 7))
= do((a1x — 2p)(aa — aew) + (@1 — 27)(a15 — avy))
< 0,

which contradicts the minimum hypothesis. o

Corollary 4.6. Let G be a bipartite graph on v + w vertices and of minimal degree 2. Then the
number of paths of length 3 in G is at least e(e/v —1)(e/w —1). This bound is achieved exactly if the
graph is regular for each of its two colours.

Proof. A path of length 3 is a sequence of 4 vertices (z,y, z,t) with no repetition such that

{$,y}, {y,z}, {Z,t} eq.

Given two adjacent vertices y and z, the number of paths (z,y, z,t) makes (d(y) —1)(d(z) — 1), where
d denotes the degree of a vertex. Therefore the number of all paths of length 3 is

Y (dly) —1)(d(z) - 1).

{y,z}€G
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Let (@ij)1<i<v,1<j<w e the reduced incidence matrix of G: a;; = 1 if the ith vertex of the first class
is adjacent to the jth vertex of the second class; otherwise a;; = 0. Then this sum is

3> aijlai = 1)(ay; — 1), (D.9)

i=1 j=1

so that it suffices to take p = =1 in Th. 4.4. O

Proof of Theorem 4.1

The case of equality follows from [56, Lemma 1.4.1] because its axiom (i) is exactly what makes
Bound (D.10) an equality.

I now follow the proof of [20, Th. 1]. If G contains no cycle of length 4, there is no path of length
3 between two adjacent vertices; if G contain no cycle of length 6, there is at most one path of length
3 between non-adjacent vertices of different colour. Therefore the sum (D.9) is bounded by

vw — e with e = ZZ @ij. (D.10)
i=1 j=1
By Corollary 4.6, if all the vertices of G have degree at least two, one has
vw —e = e fow — (1/v+1/w)e? +e

and therefore (D.3). In order to get rid of this degree condition, we have to do an induction on the sum
s = v + w of the number of columns and the number of rows of the incidence matrix. If v = 1, then
P(v,w,e) = (e —w)(e? — e + w), so that the inequality states e < w, which is trivial; symmetrically
for w = 1. Suppose the result is true for all v X w incidence matrices with v +w = s. Consider now
a v X w incidence matrix with v +w = s+ 1 and v, w > 2. If each vertex has degree at least two, the
result is true; otherwise there is a column or a row containing only zeroes or exactly one “1”. Apply
the induction hypothesis on the matrix without this row or column: we get P(v — 1,w,e — 1) < 0 or
P(v,w—1,e—1) < 0 and we may apply the following growth lemma to conclude.

Lemma 4.7. Letv,w > 1. If P(v,w,e) <0, then P(v+ 1,w,e+1) <O0.

Proof. In fact, one has
P(v+1,w,e+1) = P(v,w,e) = 2e* + (1 — 2v)e + (w — w?)(2v + 1) — v,

which is negative as long as

0

N

e<er=(20—1++/(20+1)(2v+8w?2 —8w+1))/4= (20— 1+ A)/4.

Let us use that P(v,w, e) has a unique root in e and compute P(v,w,ep). This makes

(4vw? + 2w? + 1)A/16 + (—16vw® — 8v2w? — 8w + 8vw? + 2w? — 2v + 4w — 1)/16.

Then either the second term in this sum is positive and P(v,w,eq) is positive, or the conjugate
expression of this sum is positive, and the product of the sum with this conjugate expression is

(w — 1)*w? (8v*w? + 4v*w? — 20w? + 2v* — w? — 4vw + 2v — 2w)/8,

which is positive if v,w > 1. O
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Further remarks

Remark 4.8. Theorem 4.1 does not always give the right order of magnitude for the maximal size of
a graph of girth 8: as

P(v,w, (vw)??) = 2(vw)®/3 — (vw)*3 (v 4+ w)) < 2(vw)®/? — 2(vw)*/3+1/2 L 0,

we expect to find maximal graphs of size (vw)?/?: De Caen and Székely [20, Th. 4] find a counte-
rexample to this expectation if v “lies in an interval just slightly below” w?. They conjecture [19]

that this is the case as soon as v > w®/* and v < w?.

In the case of v = w, let us give the following approximation for the real root of the polynomial.
For

e — o3 4 ;v 2 o2

9 81
40 376 80 800 8000 129808
P :_7/3 2w 2 9Y 5/3  _©9YY 4/3 2
(0:v€) = 530"+ 5157Y ~ 217" 19683° 531441 © 531441’
P(v,v,e —16/81) = 75318441(01/3 —1)(3936607/3 + 2843102 + 82620°/3
— 8748v%/3 — 118800 — 65600%/% — 24320/ — 512)
< 0.

In particular,

Corollary 4.9. Let G be a bipartite graph of size e with v vertices in each vertex class. If the girth
of G is at least 8, then ) 90

2/3 1/3
§’U /3 _ 8—1’0 / .

Let us now show that we generalise the following estimations for the size of bipartite graphs of
girth 8 in [20, Th. 1]:

(1) if the minimal degree of G is at least 2, then e < 2'/3(vw)?/3;
2/3

2
4/3
< — —
e v + 3’1}

(ii) if v < w? or w < v?, then e < (vw)
In fact,
P(’U, w, 21/3(’011))2/3) _ (vw)4/3(w2/3 - 22/3,01/3)(,02/3 . 22/3w1/3)7
which is nonnegative exactly if v < w?/4 and w < v?/4 or if (v,w) is among {(1,1),(1,2),(2,1),
(2,2), (3, 3)}, and this is the case by Prop. 2.2 if the minimal degree is at least 2.
Furthermore, by Prop. 2.2, if w > [v?/4], then [w — v?/4] vertices in W have degree 0 or 1. If

we remove them, we remove at most [w — v?/4] edges and the remaining graph has at most [v?/2]
edges because P(v, [v?/4], [v?/2] + 1) > 0. This yields

Proposition 4.10. Let G be a bipartite graph on vertex classes V. and W with #V = v and #W = w
without cycles of length 4 and 6. Its size satisfies

21/3 (vw)?/3 if max (v, w) < |min(v, w)? /4]
¢ |min(v,w)?/4] + max(v,w) otherwise.

We have optimality in the second alternative: make a bipartition V. = V4 U Va with Vi = [v/2] and
Vo = [v/2], let G’ be the complete bipartite graph on the colour classes Vi and Va, which has |v? /4]
edges. Now consider the bipartite expansion of G', add [w — v?/4] new vertices to colour class W,
and connect each of them to some vertex of V.

Note that this estimate yields another proof of [35, Th. 1] by means of [35, Th. 3].

Remark 4.11. Our inequality condenses the following facts about the behaviour of e for fixed w and
large v. If w < 3, then extremal graphs of girth 8 do not contain any cycle at all, so that their size
ise=v+w—1;if v 2w =4 and if v = w = 5, then extremal graphs of girth 8 contain exactly one
cycle, so that their size is e = v + w; if v > w = 5, then extremal graphs of girth 8 contain exactly
one “f-graph”, so that their size is e = v+ w + 1.



Ordering simultaneously the columns and lines of
0,1 matrices

with Nikolai Kosmatov.

Let M be a 0,1 matrix with m rows and n columns:

ail a2 ... QGin
a1 a9 e aAon, .

M = (a;;) = ] ] ] with a;; € {0, 1}.
Am1 Am?2 . Amn,

There are 2™t such matrices. We would like to study these matrices up to a permutation of the
rows and a permutation of the columns, and therefore propose an order on the set of rows and on
the set of columns.

Definition 1. Let L; = L;(M) = (ai1, a2, .-, Gin), 1 < i < m, be the lines of M and let C; =
C;(M) = (a1, azj, - .-, Gm;j), 1 < j < n, be its columns. The rows (vs. columns) of M are ordered if
they form an increasing sequence with respect to the lexicographic order.

Note that if the rows and columns are considered as digit sequences of binary numbers, the
lexicographic order is just the natural order on N.

Theorem 2. There is a permutation of rows and columns that orders them simultaneously.

Definition 3. The numbers r,s > 1,0 =ip <11 < i2 < - <t =m, 0=Jg < j1 < Joa < -+ <
js = n define a grid on m x n that divides M in r x s block matrices

Qiy_1+41,ju—1+1 -+ Qiy_1+417,
Bty = By u(M) = : : ,1<t<r, 1<u<s,
Qiy o141 s Aiy,ju
so that
Qig+1,jo+1 -+ Qig+1,51 |---| Qig+1,js_1+1 -+  Qig+1,j,
iy ,jo+1 s iy s s Qiy js_1+1 s iy s
@ir+1,g0+1 - oo Qigtlgy | ceo ] Gadlgsa+l s Qa4
B By s . )
M = : =
. aiQ,jO_,_l e ai%jl e aiQ,j871+1 e ai%js
Br,l Br,s
Qi1 +1,50+1 oo Qipy 41,51 |- | Bpa 1, gs1+1 - -0 Qi 41,5
aiijO"l‘l ttt ai?ﬂjl ttt air;js—l"'l ttt a/ir7js

71
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A permutation of lines L,, and L,, is admissible if ;1 < p1 < 4 and 4z—1 < p2 < i for some
t € {1,2,...,r}; otherwise, it is inadmissible. A permutation of columns C,, and C,, is admissible
if ju—1 < 1 < ju and ju—1 < g2 < jy for some u € {1,2,...,s}; otherwise, it is inadmissible. In
other words, admissible permutations of rows and columns only permute matrix coefficients inside
the block matrices defined by the grid. Matrix M is ordered with respect to the grid if

where < is the lexicographic order.

Theorem 2 is an immediate consequence of Lemma 4: it suffices to consider the trivial grid given
byr=s=1,0=1i<i=m,0=jg<j1=n.

Lemma 4. The rows and columns of a 0,1 matriz may be simultaneously ordered with respect to a
given grid by admissible permutations of its rows and columns.

Proof by induction. If m = 1 or n = 1, this is trivial. Let us suppose m,n > 1 and let us construct
the first line and then the first column of the reordered matrix. Let

J1 J2 Js
Zq_:jOJrl av Zq_:lerl aig - -- q=js—1+1 Mg
7 2 Js
A— a=jo+1 %24 Zq:jl+1 a2q .- a=js—1+1 %2q
J1 ) J2 ) Js )
q=jo+1 %irq q=ji+1 %ig - a=js—1+1 Yirg

be the matrix of numbers of ones in the lines of the block matrices By ,, 1 < u < s. Let L,(A) be
the minimal line of A: we permute L; (M) with L,(M) and still call M the resulting matrix. Then

J1 J1
E Q1q < E Aiq,

q=jo+1 q=jo+1

for each i € {1, 2, ...,41}, so that either some a1;, 1 < j < ji1, vanishes, either B; ; is a matrix of
ones. Let us permute the columns of M in such a way that that the first lines of all the resulting
block matrices By ,, 1 < u < s, consist in a block of zeroes followed by a block of ones:

0 1 1

* * * * * *
Bl,u -

* * * * * * * *

We still call M the resulting matrix. We now refine the grid on m x n in such a way that the first
lines of the block matrices of M with respect to the new grid either consist only of zeroes or consist
only of ones, as follows:

0 1
* * | % * * * | % * ) (E.1)
* * | % * * * | % *

where the double lines belong to the original grid and the simple ones have been added now. Let this
new grid be defined by the numbers r,s" > 1,0 =iy < i1 <2 < - <ip =m, 0=j§ < j1 < j4 <
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<o < ji,=mn,andlet By, t € {1,2,...,r}, u € {1,2,...,5'}, be the block matrices with respect to

taur
it. The block matrix B ; has one of the two following forms:

1 1 1 1
* kL. % X 1 1 1 1
or
* % ... kX 11 ... 1 1
We now proceed similarly with the first column. Let
11 11 i1
Ep:io-i-l ap1 Zp:io-i-l ap2 ... Ep:io—i-l Apj1
19 12 2
B_ D p—is 1 Gpl Dopmin41@p2 e Dop 4 Gpj
ir ir ir
D41l Dy 102 e Dol Opy

be the matrix of numbers of ones in the columns of the block matrices B}, 1 < ¢ < r. Let Cy(B)
be the minimal column of B: we permute C; (M) with C,(M) and still call M the resulting matrix.
Let us permute the rows of M in such a way that the first columns of all the block matrices Bl’m,
1 <t < r, consist in a block of zeroes followed by a block of ones:

0 * ... =x
0 = *
é,l(M): 1 % *
1 % ... =

The form of B ; shows that this can be done without permuting the first row, so we do not. We still
call the resulting matrix M. We now refine the grid on m X n in such a way that the first columns of
the block matrices with respect to the new grid either consist only of zeroes or consist only of ones,
so that also the tranpose of M has a form as in (E.1). Let the new grid be defined by the numbers
s >21,0=10<ii<ihb<---<il,=m,0=j)<ji <jhy<---<jl,=n.

Let N be the m — 1 x n — 1 submatrix in the lower right corner of M. By induction hypothesis,
N may be ordered by admissible permutations with respect to the grid on m — 1 x n — 1 induced by
the grid just defined. These permutations are also admissible with respect to the latter grid and do
not permute the first line and the first column of M. Let us again call the resulting matrices M and
N.

As the rows and columns of N are ordered, we have for M

Li2a ceey L/L"V‘71+1
Cjzaa ceey st—1+1

Liy42 < Ly, Lijya
<

<.
< <G G

NN
NN

Oj0+2
and our choice for the first line and the first column of M ensures that

Lig+1 < Ligt2, Cjot1 < Cjpy2. O



Transfer of Fourier multipliers into Schur multipliers
and sumsets in a discrete group

with Eric Ricard

Abstract

We inspect the relationship between relative Fourier multipliers on noncommutative Lebesgue-
Orlicz spaces of a discrete group I' and relative Toeplitz-Schur multipliers on Schatten-von-
Neumann-Orlicz classes. Four applications are given: lacunary sets; unconditional Schauder
bases for the subspace of a Lebesgue space determined by a given spectrum A C I'; the norm of
the Hilbert transform and the Riesz projection on Schatten-von-Neumann classes with exponent
a power of 2; the norm of Toeplitz Schur multipliers on Schatten-von-Neumann classes with
exponent less than 1.

1 Introduction

Let A be a subset of Z and let x be a bounded measurable function on the circle T with Fourier
spectrum in A: we write x € LY,  ~ ZkeA x32". The matrix of the associated operator y +— zy on
L? with respect to its trigonometric basis is the Toeplitz matrix

1 0o -1
1| e w1
@%7CXnQEZXZ:: 0 e To1 To X1
| s ozly 2o xo

with support in A = {(r,¢) : r — c € A}.

This is an entry point to the interplay between harmonic analysis and operator theory. In the
general case of a discrete group I', the counterpart to a bounded measurable function is defined as a
bounded operator on £ whose matrix has the form (z,,-1 )(r,e)erx r for some sequence (z.,)yer. This
will be the framework of the body of this article, while the introduction sticks to the case I' = Z.

We are concerned with two kinds of multipliers. A sequence ¢ = (¢k)kea defines

— the relative Fourier multiplication operator on trigonometric polynomials with spectrum in A

by
Z SCka — Z <Pk$kzk; (F.1)

keA keA
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— the relative Schur multiplication operator on finite matrices with support in A by

(zT,C)(r,c)EZXZ = (¢r,czr,6)(r,c)erZ (F.2)

where @ . = @r_c.

Marek Bozejko and Gero Fendler proved that these two multipliers have the same norm. The opera-
tor (F.1) is nothing but the restriction of (F.2) to Toeplitz matrices. They noted that it is automa-
tically completely bounded: it has the same norm when acting on trigonometric series with operator
coefficients xy, and this permits to remove this restriction. Schur multiplication is also automatically
completely bounded.

This observation has been extended by Gilles Pisier to multipliers acting on a translation invariant
Lebesgue space LY and on the subspace Sﬁ, of elements of a Schatten-von-Neumann class supported

by /i, respectively: it yields that the complete norm of a relative Schur multiplier (F.2) remains
bounded by the complete norm of the relative Fourier multiplier (F.1).

But L is not a subspace of S%, so that a relative Fourier multiplier may not be viewed anymore
as the restriction of a relative Schur multiplier to Toeplitz matrices. We point out that this difficulty
may be overcome by using Szegd’s limit theorem: a bounded measurable real function is the weak”
limit of the normalised counting measure of eigenvalues of finite truncates of its Toeplitz matrix.
Note that other types of approximation are also available, as the completely positive approximation
property and Reiter sequences combined with complex interpolation: they are compared in Section 3
in terms of local embeddings of L? into SP. They are more canonical than Szegd’s limit theorem, but
give no access to general Orlicz norms.

Theorem 1.1. Let ¢p: RT™ — R be a continuous nondecreasing function vanishing only at 0. The
norm of the following operators is equal:

— the relative Fourier multiplication operator (F.1) on the Lebesgue-Orlicz space Lﬁ(Sw) of SY¥-
valued trigonometric series with spectrum in A;

— the relative Schur multiplication operator (F.2) on the Schatten-von-Neumann-Orlicz class
S;lf’(Sw) of S¥ -valued matrices with support in A.

Look at Theorem 2.6 for the precise statement in the general case of an amenable group I, for
which a block matrix variant of Szeg&’s limit theorem in the style of Erik Bédos [6], Theorem 2.1, is
available.

An application of this theorem to the class of all unimodular Fourier multipliers yields a transfer
of lacunary subsets into lacunary matrix patterns. Call A unconditional in LP if (z¥)rea is an
unconditional basis of L¥, and A unconditional in SP if the sequence (eq),e i of elementary matrices is
an unconditional basis of Sf(. These properties are also known as A(max(2,p)) and o(p), respectively;
they have natural “complete” counterparts that are also known as A(p)cp (K(p)ep if p < 2) and o(p)cb,
respectively: see Definitions 4.1 and 4.2.

Corollary 1.2. If/l is unconditional in SP, then A is unconditional in LP. A is completely uncon-
ditional in SP if and only if A is completely unconditional in LP.

Look at Proposition 4.3 for the precise statement in the general case of a discrete group I

The two most prominent multipliers are the Riesz projection and the Hilbert transform. The first
consists in letting ¢ be the indicator function of nonnegative integers and transfers into the upper
triangular truncation of matrices. The second corresponds to the sign function and transfers into the
Hilbert matrix transform. We obtain the following partial results.

Theorem 1.3. The norm of the matriz Riesz projection and of the matrixz Hilbert transform on
S¥(SY) coincide with their norm on S¥.
— If p is a power of 2, the norm of the matriz Hilbert transform on SP is cot(w/2p).

— The norm of the matriz Riesz projection on S* is \/2.
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The transfer technique lends itself naturally to the case where A contains a sumset R + C: if
subsets R’ and C’ are extracted so that the r + ¢ with r € R’ and ¢ € C’ are pairwise distinct, they
may play the role of rows and columns. Here are consequences of the conditionality of the sequence
of elementary matrices e, . in SP for p # 2 and of the unboundedness of the Riesz transform on S!
and S, respectively.

Theorem 1.4. If (2¥)rca is a completely unconditional basis of LY with p # 2, then A does not
contain sumsets R+ C of arbitrarily large sets.

— If LY admits some completely unconditional approzimating sequence, or

— if the space C, of continuous functions with spectrum in A admits some unconditional approxi-
mating sequence,

then A does not contain the sumset R+ C of two infinite sets.

The proof of the second part of this theorem consists in constructing infinite subsets R’ and C’,
and skipped block sums ) (T}, , —T%;) of a given approximating sequence that act like the projection
on the “upper triangular” part of R’ + C’. Look at Proposition 4.8 and Theorem 7.4 for the precise
statement in the general case of a discrete group I

In the case of quasi-normed Schatten-von-Neumann classes SP with p < 1, the transfer technique
yields a new proof for the following result of Alexey Alexandrov and Vladimir Peller.

Theorem 1.5. Let 0 < p < 1. The Fourier multiplier ¢ is contractive on LP or on LP(SP) if and
only if the Schur multiplier ¢ is contractive on SP or on SP(SP), if and only if the sequence @ is the
Fourier transform of an atomic measure of the form Y ag0, on T with Y |ag|? < 1.

The emphasis put on relative Schur multipliers motivates the natural question of how the norm of
an elementary Schur multiplier, that is a rank 1 matrix (orc) = (z,ry.), gets affected when the action
of o is restricted to matrices with a given support. The surprising answer is the following.

Theorem 1.6. Let I C R x C and consider (z,)rcr and (yc)eec. The relative Schur multiplier
on S given by (2rYc)(r.c)er has norm sup(T,C)EI|xTyC|.

Let us finally describe the content of this article. Section 2 is devoted to transfer techniques
for Fourier and Schur multipliers provided by a block matrix Szeg6 limit theorem. This theorem
provides local embeddings of L¥ into S¥; Section 3 shows how interpolation may be used to define
such embeddings for the scale of LP spaces. Section 4 is devoted to the transfer of lacunary sets into
lacunary matrix patterns; the unconditional constant of a set A is related to the size of the sumsets it
contains. Section 5 deals with Toeplitz Schur multipliers for p < 1 and comments on the case p > 1.
The Riesz projection and the Hilbert transform are studied in Section 6. In Section 7, the presence of
sumsets in a spectrum A is shown to be an obstruction for the existence of completely unconditional
bases for L¥. The last section provides a norm-preserving extension for partially specified rank 1
Schur multipliers.

Notation and terminology. Let T={z € C: |z| = 1}.
Given an index set C' and ¢ € C, e, is the sequence defined on C as the indicator function x .
of the singleton {c}, so that (e.)ccc is the canonical Schauder basis of the Hilbert space of square

summable sequences indexed by C, denoted by ¢Z. We will use the notation ¢2 = 6%1721_”%} and (2 =

2.

Given a product set I = R x C and ¢ = (r,¢), the indicator function e, = e, is the elementary
matriz identified with the linear operator from ¢% to ¢% that maps e. on e, and all other basis vectors
on 0. The matriz coefficient at coordinate q of a linear operator x from ¢Z, to (% is z, = trez and

q
its matriz representation is (zq)qerxc = quRxC zgeq. The support or pattern of zis {g € R x C':

x4 # 0}.

The space of all bounded operators from (2 to (% is denoted by B(¢%, (%), and its subspace of
compact operators is denoted by S*°.

Let 1: Rt — RT be a continuous nondecreasing function vanishing only at 0. The Schatten-
von-Neumann-Orlicz class SY is the space of those compact operators = from 0%, to (% such that
tri(|z]/a) < oo for some a > 0. If ¢ is convex, then S¥ is a Banach space for the norm given by
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llz||lsw = inf{a > 0 : trey(|z|/a) < 1}. Otherwise, S¥ is a Fréchet space for the F-norm given by
lz]|g» = inf{a > 0 : tr¢)(|z|/a) < a} (see [70, Chapter 3].) This space may also be constructed as
the noncommutative Lebesgue-Orlicz space LY (tr) associated to the von Neumann algebra B(¢Z,, (%)
endowed with the normal faithful semifinite trace tr. If ¢ is the power function ¢ — tP, this space is
denoted SP: if p > 1, then ||z|s» = (tr|z[P)/?; if p < 1, then ||z||s» = (tr|z[?)/*+P),

If #C = # R = n, then B(¢%, (%) identifies with the space of n x n matrices denoted S2°, and
we write S¥ for S¥. Let (R, x C,) be a sequence of finite sets such that each element of R x C
eventually is in R,, x Cj,. Then the sequence of operators P,: z — > g€ Ry x Oy Ta€q tends pointwise
to the identity on SY.

For I C R x C, we define the space S}/’ as the closed subspace of S¥ spanned by (eq)ger: this
coincides with the subspace of those € S¥ whose support is a subset of I.

A relative Schur multiplier on S? is a sequence ¢ = (g4)qer € C! such that the associated Schur
maultiplication operator M, defined by e, + gq4e, for ¢ € I is bounded on S¥. The norm ||QHM(S}z;)
of p is defined as the norm of M,. This norm is the supremum of the norm of its restrictions to finite
rectangle sets R’ x C’. We used [77, 79] as a reference.

Let I' be a discrete group with identity €. The reduced C*-algebra of I' is the closed subspace
spanned by the left translations A, (the linear operators defined on % by A es = e g) in B(¢%); we
denote it by C, set in roman type. The von Neumann algebra of I' is its weak™ closure, endowed with
the normal faithful normalised finite trace 7 defined by 7(z) = w ; we denote it by L>. Let ¢: RT —
R™ be a continuous nondecreasing function vanishing only at 0: we define the noncommutative
Lebesgue-Orlicz space LY of I" as the completion of L> with respect to the norm given by ||z||p+ =
inf{a > 0: 7(x(|z|/a)) < 1} if 9 is convex and with respect to the F-norm given by||z||+ = inf{a >
0 : 7(¢¥(|z|/a)) < a} otherwise. If ¢ is the power function ¢ — P, this space is denoted LP: if
p > 1, then ||z||Lr = 7(jz[?)"/?; if p < 1, then ||z||» = 7(|z[?) ™). The Fourier coefficient of x
at v is @y = 7(Aj2) = 24, and its Fourier series is 3 . xyAy. The spectrum of an element x
is {y € I': z, # 0}. Let X be the C*-algebra C or the space L¥ and let A C I'": then we define X, as
the closed subspace of X spanned by the A, with v € A. We skip the general question for which
spaces X this coincides with the subspace of those z € X whose spectrum is a subset of A, but note
that this is the case if I" is an amenable group (or if L> has the QWEP by [45, Theorem 4.4]) and
1 is the power function ¢ — tP; note also that our definition of X 4 makes it a subspace of the heart
of X: if x € X4, then 7(¢(|x|/a)) is finite for all a > 0.

A relative Fourier multiplier on X, is a sequence ¢ = (¢,)yea € C” such that the associated
Fourier multiplication operator M, defined by A, — ¢\, for v € A is bounded on X,. The
norm [[¢||ax ) of ¢ is defined as the norm of M. Fourier multipliers on the whole of the C*-algebra
C are also called multipliers of the Fourier algebra A(I") (which may be identified with L!); they form
the set M(A(I)).

The space S¥(S¥) is the space of those compact operators z from (2 ® €% to £ ® (% such that
|z||swsw) = inf{a : tr @ trep(|x[/a) < 1}: it is the noncommutative Lebesgue-Orlicz space L¥ (tr @ tr)
associated to the von Neumann algebra B(¢?) ® B((Z,¢%). One may think of S¥(S%) as the S¥-
valued Schatten-von-Neumann class: we define the matrix coefficient of  at ¢ by z; = (Idge ® tr)
((Ing ® ej;)ac) € SY and its matrix representation by quRxC 2q ® e4. The support of x and the
subspace S?(Sw) are defined in the same way as S}b.

Similarly, the space LY (tr ®7) is the noncommutative Lebesgue-Orlicz space associated to the
von Neumann algebra B(¢?) @ L = L®°(tr®7). One may think of LY (tr ®7) as the S¥-valued
noncommutative Lebesgue space: we define the Fourier coefficient of z at v by ., = (Idge ®7) ((Id2 ®
)\Ty)x) € S¥ and its Fourier series by Z'ye %y ® Ay; the spectrum of x is defined accordingly. The
subspace Lﬁ (tr ®7) is the closed subspace of LY (tr ®7) spanned by the z® A\, with x € S¥ and v € A.

An operator T on S? is bounded on S}p (S¥) if the linear operator Idgy ® T defined by z ® y
r®T(y) for z € S¥ and y in S}/’ on finite tensors extends to a bounded operator Idgs ® 1" on S}/’ (S¥).
The norm of a Schur multiplier p on S}p (S¥) is defined as the norm of Idgs ® M,. Similar definitions
hold for an operator T" on Ll//i; the norm of a Fourier multiplier ¢ on Lﬁ (tr ®7) is the norm of IdISZ’ ®@M,
on Lﬁ (tr ®7).

Let ¢ be the power function ¢ — t? with p > 1: the norms on SP(S?) and LP(tr ®7) describe the
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canonical operator space structure on SP and L?, respectively: see [77, Corollary 1.4]; we should rather
use the notation SP[SP] and SP[LP]. This explains the following terminology. An operator T on S7
is completely bounded (c.b. for short) if Ids» ® T' is bounded on S7(SP); the norm of Idg» ® T is the
complete norm of T' (compare [77, Lemma 1.7].) The complete norm [[o[|yr,,(s7) of a Schur multiplier o
is defined as the complete norm of M,. Note that the complete norm of a Schur multiplier ¢ on S¢°
is equal to its norm [72, Theorem 3.2]: |lollmy,(s3) = [loflm(ss). The complete norm |||y, wz) of
a Fourier multiplier ¢ is defined as the complete norm of M,,. The complete norm of an operator T’
on C, is the norm of Ids~ ® 1" on the subspace of S* ® C spanned by the z ® A\, with x € S*
and v € A; in the case A = I', ¢ is also called a c.b. multiplier of the Fourier algebra A(I") and one
writes ¢ € Mcp(A(IN)); if I' is amenable, the complete norm of a Fourier multiplier ¢ on C, is equal
to its norm [25, Corollary 1.8]: [[¢|ln,, ca) = l@lM(c)-

An element whose norm is at most 1 is contractive, and if its complete norm is at most 1, it is
completely contractive.

If I' is abelian, let G be its dual group and endow it with its unique normalised Haar measure m:
then the Fourier transform identifies the C*-algebra C as the space of continuous functions on G, L*°
as the space of classes of bounded measurable functions on (G m) L¥ as the Lebesgue-Orlicz space
of classes of y-integrable functions on (G, m), 7(z) as [, x(g)dm(g), LY(tr®@7) as the S¥-valued
Lebesgue-Orlicz space L¥(S¥) and x as x(’y)

2 Transfer between Fourier and Schur multipliers

Let A be a subset of a discrete group I" and let ¢ be a relative Fourier multiplier on C,, the closed
subspace spanned by (Ay)ye4 in the reduced C*-algebra of I'. Let & € C4: the matrix of x is constant
down the diagonals in the sense that for every (r,c) € I' X I'; &y = Tye—1,¢ = Tpc—1; We say that x is
a Toeplitz operator on (4. Furthermore, the matrix of the Fourier product M,z of ¢ with z is given
by (My)rc = @re—12rc. This shows that if we set A={(r,e)eI'xI':rc' € A} and Gr.c = Pre-1,
then M,z is the Schur product Mgz of ¢ with z. We have transferred the Fourier multiplier ¢ into
the Schur multiplier ¢: this shows at once that the norm of the Fourier multiplier ¢ on Cy is the
norm of the Schur multiplier ¢ on the subspace of Toeplitz elements of B(¢2.) with support in /1 and
that the same holds for complete norms.

We shall now give us the means to generalise this identification to the setting of Lebesgue-Orlicz
spaces L¥: we shall bypass the main obstacle, that L¥ may not be considered as a subspace of S,
by the Szegd limit theorem as stated by Erik Bédos [6, Theorem 10].

As we want to compute complete norms of multipliers, we shall generalise the Szegé limit theorem
to the block matrix case, not considered in [6]. Let us first recall the scalar case. Consider a discrete
amenable group I': it admits a Fglner averaging net of sets (I,), that is,

— each I, is a finite subset of I;
— #(yILAT,) = o(#1,) for each vy € I'.

Each set I, corresponds to the orthogonal projection p, of ¢% onto its (# I,)-dimensional subspace
of sequences supported by I,. The truncate of a selfadjoint operator y € B(¢%) with respect to I,
is y, = p.yp,: it has # I, eigenvalues «;, counted with multiplicities, and its normalised counting
measure of eigenvalues is

1 #1I,
L= O -
8 #n; :

If y is a Toeplitz operator, that is, if y € L>°, Erik Bédos [6, Theorem 10] proves that (u,) converges
weak™ to the spectral measure of y with respect to 7, which is the unique Borel probability measure p

on R such that
= [ vteinte)

for every continuous function ¥ on R that tends to zero at infinity. If I" is abelian, then y may be
identified as the class of a real-valued bounded measurable function on the group G dual to I" and
w is the distribution of y.
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The matrix Szegd limit theorem is the analogue of this result for selfadjoint elements y € SS°®L>,
whose SS°-valued spectral measure b is defined by

léwmmmmzﬂwa®ﬂ¢@»

The orthogonal projection p, = Id2 ® p, defines the truncate y, = p,yp, € S;° ® IB%([%), and the
So°-valued normalised counting measure of eigenvalues i, by

tr
# 1,
Theorem 2.1 (Matrix Szegd limit theorem). Let I" be a discrete amenable group and let (I,) be a
Folner averaging net for I'. Let y be a selfadjoint element of S$° ® L. The net (u,) of SX°-valued

normalised counting measures of eigenvalues of the truncates of y with respect to I, converges in the
weak™ topology to the spectral measure of y:

Awmm=w® ((w)-

A¢WMMW%%MQ®TW@»

for every continuous function v on R that tends to zero at infinity.

Sketch of proof. Let us first suppose that y € S7° ® C: we may suppose that y = Zver Yy ® Ay with
only a finite number of the y, € S?° nonzero: the S{°-valued matrix of y, for the canonical basis
of E%L is (ymfl)(m)ep“pb. It suffices to prove that

tr
#1,
for every k. This is trivial if £ = 0. If £ = 1, then

Id®

() = ld@7(y*) (F.3)

tr 1
Id®—yL = I yc,c:1d®7—y

as Yee = Yoot = Ye. If k > 2, the same formula holds with y* instead of y:

tr

dor@y*) =1d® Y

(.Y D.),

so that we wish to prove
L ks N
ld® tr(pLyka - (pLpr> ) = 0(# FL)'
Note that . L
HId ® tr(ﬁLykﬁL - (ﬁbyﬁL) )HS}L < ||ﬁLykﬁL - (ﬁLyﬁb) ”SI(S}L)-
Lemma 5 in [6] provides the following estimate: as

~ ~ ~ ~\k ~ — ~ ~ o~ ~ —1 ~ ~ ~\k—1 ~
Dy B — Buoyp)® = By (b, — Buyb.) + Byt B — Buyp)* ) yb,

an induction yields
||ﬁLykﬁL - (ﬁLyﬁL)kHsl(S}L) < (k - 1)HyHIS€£O(18Loo ||yﬁL _ﬁLyﬁLHSl(S}L)-

It suffices to consider the very last norm for each term y, ® A, of y: let h € £2 and 3 € I'; as

((yy @ A)Be — Bu(yy @ Ay)P.) (R @ eg) = {?(J)w(h)evﬁ if Bel,and 3¢ T,

otherwise,
the definition of a Fglner averaging net yields

1y ® Ay)Be = By @ My)ellsi sy < LN L)y llsy, = o(# ).

An approximation argument as in [6, proof of Proposition 4] permits to conclude for y € L. O
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Let us now describe and prove the LY version of the transfer described at the beginning of this
section.

Lemma 2.2. Let I' be a discrete amenable group and p > 0. Let AC T and o € CA. Consider the
associated Toeplitz set A = {(r,c) € ['xI" : r¢c™! € A} and the Toeplitz matriz defined by frc = @pe—1.
Let p: RT — RT be a continuous nondecreasing function vanishing only at 0.
(a) The norm of the relative Fourier multiplier ¢ on Lﬁ is bounded by the norm of the relative
Schur multiplier ¢ on S;f

(b) The norm of the relative Fourier multiplier ¢ on qui(tr ®7) is bounded by the norm of the
relative Schur multiplier ¢ on S;{,’(S’l’),

Theorem 2.6 (a) below will provide the full picture of case (b): both norms are in fact equal. This
is not so in case (a): see Remark 5.2.

Proof. A Toeplitz matrix has the form (.’I]chl)(nc)e/i. Our definition of the space Lﬁ (cf. section on
Notation and terminology) ensures that we may suppose that only a finite number of the z., are
nonzero for the computation of the norm of ¢. Then (z,.-1 )(r,c)e/i is the matrix of the operator z =
> ea Ty Ay for the canonical basis of (7.

Let y = z*x and let us use the notation of Theorem 2.1. Let 1/? be a continuous function with
compact support such that v (t) = (t) on [0, [|z||?].

(a). By Szeg6’s limit theorem (as given in [6, Theorem 1]),

L trp(pap,) = #i Do) = (@) = 7))

t,
#T, I

Let us describe how ¢ acts on xp,. Schur multiplication with ¢ transforms the matrix of xp,, that is
the truncated Toeplitz matrix (szl)(m)e/{mrxn, into the matrix (B,..—1 szl)(r’c)e/{mrxn, so that
it transforms ap, into (My,z)p, .

(b). Combine the argument in (a) with the matrix Szegé limit theorem. O

In the case of a finite abelian group, no limit theorem is needed: this case has been considered
in [66, Proposition 2.5 (b)].
Remark 2.3. Our technique proves in fact that the norm of a Fourier multiplier is the upper limit of
the norm of the corresponding relative Schur multipliers on subspaces of truncated Toeplitz matrices.
We ignore whether it is actually their supremum.

The following well-known argument has been used (first in [17], see [18, Proposition D.6]) to show
that the complete norm of the Fourier multiplier ¢ on L% bounds the complete norm of the Schur
multiplier ¢ on S§°, so that we have in full generality [/¢[lm,ca) = [[llma,s32)- This argument

A

permits to strengthen Lemma 2.2 (b).

Lemma 2.4. Let I' be a discrete group and let R and C be subsets of I'. To A C I' associate A=
{(r,c) € Rx C :rc™t € A}; given ¢ € C define ¢ € CA by G = ppe1. Let p: RT — RT be a
continuous nondecreasing function vanishing only at 0. The norm of the relative Schur multiplier ¢
on S;{f(Sd’) is bounded by the norm of the relative Fourier multiplier ¢ on Lﬁ(tr ®T).

Proof. We adapt the argument in [77, Lemma 8.1.4]. Let 2, € S¥, of which only a finite number are
nonzero. The space LY (tr ® tr ®7) is a left and right L°°(tr ® tr ®7)-module and dover €y @Ay isa
unitary in L°°(tr ®7), so that

HZ Ta ® €q SU(se) (Id ® Z err & )‘T) (Z Tg® g ® )‘6) (Id © Z Cec® )‘:)‘

ged reR qed ceC

LY (tr ® tr ®7)

= Z Tr,c ® Cre & Arc*1
(r,c)e/{

— Z( Z xm®em)®)\7

YEA Mpel=y

LY (tr ® tr ®7)

LY (tr ® tr ®7)
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This yields an isometric embedding of S;lf’ (S¥) in LY%(tr@tr@7). As S¥(S¥) is the Schatten-von-
Neumann-Orlicz class for the Hilbert space ¢? ® £% which may be identified with ¢2,

Z ( Z Tre® er,c) @ Py Ay

YEA Meml=y

E Ty ® Pge =
H 1 Pa%a|gu gu) ’
qed 4

LY (tr ® tr ®7)

< dse & M ||| 3 2 @ e
qu'

SHCON

Remark 2.5. The proof of Lemma 2.4 shows also the following transfer. Let (r;) and (¢;) be sequences
in I, consider A = {(i,j) € Nx N : ric; € A} and define ¢ € cA by ¢(i,7) = ¢(ric;j). Then the
norm of the relative Schur multiplier ¢ on Sg{(Sw) is bounded by the norm of the relative Fourier
multiplier Idgs ® M, on Lﬁ (tr ®7) (compare with [79, Theorem 6.4].) In particular, if the r;c; are
pairwise distinct, this permits to transfer every Schur multiplier, not just the Toeplitz ones. See [66,
Section 11] for applications of this transfer.

Here is the announced strengthening of Lemma 2.2.

Theorem 2.6. Let I' be a discrete amenable group. Let A C I' and ¢ € CA. Consider the associated
Toeplitz set A = {(r,c) € I' x I' : r¢=* € A} and the Toeplitz matriz defined by @Grc = Qre-1.
(a) Let v: RY — RT be a continuous nondecreasing function vanishing only at 0. The norm of
the relative Fourier multiplier ¢ on Lﬁ (tr ®7) and the norm of the relative Schur multiplier ¢
Y QY
on S;(S¥) are equal.
(b) Let p > 1. The complete norm of the relative Fourier multiplier ¢ on LY and the complete
norm of the relative Schur multiplier ¢ on Sﬁ, are equal:

el wr) = 1€l s2)-

(¢) The norm of the relative Fourier multiplier ¢ on C 4, its complete norm, the norm of the relative
Schur multiplier ¢ on S/‘?{O and its complete norm are equal:

el = el ©a) = 1€lmas5) = [ Elhaess)-

(d) Suppose that A = I'. The norm of the Fourier algebra multiplier o, its complete norm, the
norm of the Schur multiplier ¢ on S and its complete norm are equal:

lelmacry) = lelva ) = [1B8lMas=) = [Bllms>)-

Proof. Combine Proposition 2.2 (b) with Lemma 2.4. Recall that if I is amenable, the norm of a
Fourier multiplier ¢ on C, is equal to its complete norm [25, Corollary 1.8] and that the complete
norm of a Schur multiplier ¢ on S is equal to its norm [72, Theorem 3.2]. O

3 Local embeddings of L? into SP

The proof of Lemma 2.2 can be interpreted as an embedding of LY into an ultraproduct of finite-
dimensional spaces SY that intertwines Fourier and Toeplitz Schur multipliers. If we restrict ourselves
to power functions ¢ : ¢ +— tP with p > 1, such embeddings are well known and the proof of Lemma 2.2
does not need the full strength of the Matrix Szegé limit theorem but only the existence of such
embeddings. In this section, we explain two ways to obtain them by interpolation.

The first way is to extend the classical result that the reduced C*-algebra C of a discrete group
I' has the completely contractive approximation property if I' is amenable. We follow the approach
of [18, Theorem 2.6.8]. Let I" be a discrete amenable group and I', be a Fgluer averaging net of sets.
As above, we denote by p, the orthogonal projection from (2 to E%L. Define the compression ¢, and
the embedding 1, by

¢.: C—B(f) and ,:B(E)—C (F.4)
T PP, erc > (1/#T)Ar A1
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If we endow IB%(E%L) with the normalised trace, these maps are unital completely positive, trace pre-
serving (and normal) and the net (¢,¢,) converges pointwise to the identity of C. One can therefore
extend them by interpolation to completely positive contractions on the respective noncommutative
Lebesgue spaces: recall that LP(B((3 ), (1/#T,)tr) is (# I‘L)fl/pSZE p,- We get a net of complete
contractions

G LP = (# I‘L)_l/pSiFL and 1), : (#FL)_l/pSiFL — LP,

such that (¢,(,) converges pointwise to the identity of L?. Moreover, the definitions (F.4) show that
these maps also intertwine Fourier and Toeplitz Schur multipliers.

Remark 3.1. This approach is more canonical as it allows to extend the transfer to the vector-valued
spaces in the sense of [77, Chapter 3]. Recall that for any hyperfinite semifinite von Neumann
algebra M and any operator space E, one can define LP(M, E): for p = oo, this space is defined as
M ®min E; for p = 1, this space is defined as My P®FE; these spaces form an interpolation scale for
the complex method when 1 < p < co. For us, M will be B(¢?) or the group von Neumann algebra
L. As the maps ¥, and ¢, are unital completely positive and trace preserving and normal, they
define simultaneously complete contractions on M and M,. By interpolation, the maps ¥, ® Idg and
¢, @ Idg are still complete contractions on the spaces L, (E) and SP[E]. Let ¢: I' — C: the transfer
shows that the norm of Idg ® My, on LP(E) is bounded by the norm of Idg ® My on SP[E], and that
their complete norms coincide. In formulas,

I1de ® My|lpre(p) < 1de ® Mg|lsse(a),
[1dg ® My |ebwr(z)) = 1de @ Mgllepse(£)-

This approximation is two-sided whereas the proof of Lemma 2.2 uses only a one-sided approxi-
mation. This subtlety makes a difference if one tries to give a direct proof by complex interpolation,
as we shall do now.

Proposition 3.2. Let I' be a discrete amenable group and let (u,) be a Reiter net of means for I':

— each u, is a positive sequence summing to 1 with finite support I, C I' and viewed as a diagonal
operator from (}, to (7., so that

lpllsr =7 (), =1

YETL,

— the net (u,) satisfies, for each v € I', Reiter’s Property P :

Z ’(Mb)yflg - (H’L)ﬁ‘ — 0. (F.5)

per
Let x € SP @ L>® =L (tr®7) and p > 1. Then
limsup ||z, |lso(sz) = [llLo(tr @r)-

Proof. Consider z =3 2y ® Ay with only a finite number of the z, € S5° nonzero. As

Yer

Z ‘(NL)}/}W - (ML);/2’2 < Z ’(Mb)yflﬁ - (NL)ﬁ

BeT Ber

)

Property P; implies Property Ps:

1/2

H)\'YIU’L - IU’L1/2)\’YHS2 — 0,

so that
lwp!? = 1l als2(s2) = 0.
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As the S2°-valued matrix of = for the canonical basis of % is (Tpe—1)(reyerxr,

||$M}/2||§2(szb) = Z erc*lH%;‘ (1),
(r,e)e’'xI”
=D (e 3 e lidy
cel’ rel’
— 2 _ 2
- Z (ML)CHZ'HLQ(H@T) - ||:C||L2(tr®'r)'
cel’

By density and continuity, the result extends to all z € L2(tr ®7).
Let us prove now that for 2 € L*°(tr ®7)
limsup ||z lsysy) < 2/l on)-
The polar decomposition z = u|z| yields a factorisation = ab with a = u|z|*/? and b = |z|'/?
in L*°(tr ®7) such that

1/2
lallLer or) = IbllLagrom) = l2llA s

1/2
lallLs i o) = 12112 e gy
Then xu, = a(b,uLl/2 — u2/2b)u2/2 + auLl/2b,uL1/2, so that the Cauchy-Schwarz inequality yields

lzpllssty < llallne oo | (Our’? — p2b)u?lsu sty + llapt 2but/?||s s
<

lallues (e @mllbrl’? = 1/ ?blls2(s2) + lalliz e om 1Bl @)
and therefore our claim. Now complex interpolation yields
timsup [l llso sz < lellioge an) (F.6)

for x € L®(tr ®7) and p € [1, 00]. Indeed, let u be the unitary appearing in the polar decomposition
of z. Consider the function f(z) = u|x|P?u? analytic in the strip 0 < Sz < 1 and continuous on its
closure: then f(it) is a product of unitaries for ¢ € R, so that

1f (i)l trer) = 1.
Also
I1f(L+it)l[s1(s1) = Il|]Ppllssy)
As SP(SP) is the complex interpolation space (S (S5°),SY(S;))1/p,

1
sl P lsoqsz) = 1 F(L/P)Isnsz) < lalPrllsiss
Then, taking the upper limit and using the estimate on S*(SL)

. 3 1
lim sup qu}/pHsp(sg) < limsup |||9U|p/h||s{j(08;)

<Pt or = IellLoer or)-
The reverse inequality is obtained by duality; first note that for y € L (tr ®7),
lim tr yu; = 7(y).
With the above notation and the inequality for p’,
|2, = (laf”) = Yimn tr )7 p1; = Viantr g~ PP
<timsup [l; 12 P g oy I s

. — 1-1 1
= limsup [z Pa; ™7 gy gpr It P llso sy

_ . 1
< PPl limsup g Pl soese)

so that
limsup H:C,LLLl/p”SP(SfL) = H:C||€p(tr®7)' O
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Remark 3.3. Let p be any positive diagonal operator with tr p =1 and p > 2: then ||xu1/1’||sp(sg) <
|z||Le for all z € L (tr ®7). The Reiter condition is only necessary to go below exponent 2.

In the same way, using interpolation, we can come back to approximation on both sides using
Reiter means, that is

/2Pt sosey < llzlue
and we have
lim sup || 40/ 2wl || o sy = [|2]|Le (or @r)-

Note that this formula is in the same spirit as the first approach of this section.

4 Transfer of lacunary sets into lacunary matrix patterns

As a first application of Theorem 2.6, let us mention that it provides a shortcut for some arguments
in [37] as it permits to transfer lacunary subsets of discrete group I" into lacunary matrix patterns in
I' x I'. Let us first introduce the following terminology.

Definition 4.1. Let I" be a discrete group and A C I'. Let X be the reduced C*-algebra C of I" or
its noncommutative Lebesgue space L? for p € [1, 00].

(a) The set A is unconditional in X if the Fourier series of every x € X4 converges unconditionally:
there is a constant D such that

Z TyExy Ay

yeA

< Dlle|x
X

finite A’ C A and €4 € T. The minimal constant D is the unconditional constant of A in X.

(b) X =C,let X =S*®C;if X =LP, let X = LP(tr®7). The set A is completely unconditional
in X if the Fourier series of every x € X 4 converges unconditionally: there is a constant D such

that
Z Ty ® ExAy
yeA!

< Dz
X

for finite A’ C A and ¢, € T. The minimal constant D is the complete unconditional constant
of A in X.

Unconditional sets in LP have been introduced as “A(p) sets” in [37, Definition 1.1] for p > 2:
if I' is abelian, they are Walter Rudin’s A(p) sets if p > 2 and his A(2) sets if p < 2: see [88, 15].
Asma Harcharras [37, Definition 1.5, Comments 1.9] termed completely unconditional sets in L?
“A(p)cp sets” if p € ]2, 00[, and “K(p)ep sets” if p € ]1, 2]; her definitions are equivalent to ours by the
noncommutative Khinchin inequality.

Sets that are unconditional in C have been introduced as “unconditional Sidon sets” in [16]. If
I' is amenable, Fourier multipliers are automatically c.b. on C4, so that such sets are automatically
completely unconditional in C, and there are at least three more equivalent definitions for the coun-
terpart of Sidon sets in an abelian group. If I" is nonamenable, these definitions are not all equivalent
anymore and our notion of completely unconditional sets in C corresponds to Marek Bozejko’s “c.b.
Sidon sets.”

Definition 4.2. Let 1 <p<ocoand I C R x C.

(a) The set I is unconditional in SP if the matrix representation of every x € S¥ converges uncon-
ditionally: there is a constant D such that

H E Lg€qCyq

qel’

< Dzl
P

for finite I’ C I and ¢, € T. The minimal constant D is the unconditional constant of I in SP.
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(b) The set I is completely unconditional in SP if the matrix representation of every z € S}(SP)
converges unconditionally: there is a constant D such that

HZ Tq® quqH < Dllzlp
qel’ b

for finite I’ C I and ¢, € T. The minimal constant D is the complete unconditional constant of
I in SP.

Harcharras [37, Definitions 4.1 and 4.4, Remarks 4.6 (iv)] termed unconditional and completely
unconditional sets in SP “o(p) sets” and “o(p)cp sets,” respectively; her definitions are equivalent by
the noncommutative Khinchin inequality.

Proposition 4.3. Let I' be a discrete group. Let A C I and consider the associated Toeplitz set
A={(r,c)e Il xT:rc e A}. Letpe [1,00].

(a) If I' is amenable, then A is unconditional in L? if A is unconditional in SP.

(b) If A is completely unconditional in LP, then A is completely unconditional in SP. The converse
holds if I' is amenable.

Proof. The first part of (b) follows by the argument of the proof of [37, Proposition 4.7]: let us sketch
it. Consider the isometric embedding of the space S4(S?) in LY} (tr ® tr ®7) that is given in the proof
of Lemma 2.4 and apply the equivalent Definition 1.5 in [37] of the complete unconditionality of A:
this gives the complete unconditionality of A in the equivalent Definition 4.4 in [37].
Unconditionality in LP expresses the uniform boundedness of relative unimodular Fourier mul-
tipliers on L”; complete unconditionality expresses their uniform complete boundedness. Uncondi-
tionality in SP expresses the uniform boundedness of relative unimodular Schur multipliers on Sz;
complete unconditionality expresses their uniform complete boundedness. The second part of (b)
follows therefore from Theorem 2.6 (b) and (a) follows from Lemma 2.2 (a). O

Remark 4.4. This transfer does not pass to the limit p = oco: Nicholas Varopoulos ([100, Theorem 4.2],
see [66, § 5] for a reader’s guide) proved that unconditional sets in S are finite unions of patterns
whose rows or whose columns contain at most one element, and this excludes sets of the form A for
any infinite A.

Remark 4.5. See [66, Remark 11.3] for an illustration of Proposition 4.3 (b) in a particular context.

Remark 4.6. Let p be an even integer greater or equal to 4. The existence of a o(p)en, set that is
not a o(q) set for any ¢ > p [37, Theorem 4.9] becomes a direct consequence of Walter Rudin’s
construction [88, Theorem 4.8] of a A(p) set that is not a A(q) set for any ¢ > p, because this set has
property B(p/2) [37, Definition 2.4] and is therefore A(p)cp by [37, Theorem 1.13] (in fact, it is even
“l-unconditional” in L? because B(p/2) is “p/2-independence” [66, §11].)

Remark 4.7. In the same way, Theorem 5.2 in [37] becomes a mere reformulation of [37, Proposition
3.6] if one remembers that the Toeplitz Schur multipliers are 1-complemented in the Schur multipliers
for an amenable discrete group and for all classical norms. Basically results on A(p)cp sets produce
results on o(p)cp, sets.

Let us now estimate the complete unconditional constant of sumsets. In the case I' = Z, Har-
charras [37, Prop. 2.8] proved that a completely unconditional set in LP cannot contain the sumset
of characters A + A for arbitrary large finite sets A: in particular, if A O A+ A with A infinite, then
A is not a completely unconditional set. Her proof provided thus examples of A(p) sets that are not
A(p)eh sets.

We generalise Harcharras’ result in two directions. Compare [54, §1.4].

Proposition 4.8. Let I' be a discrete group and p # 2. A completely unconditional set in LP
cannot contain the sumset of two arbitrarily large sets. More precisely, let R and C be subsets of I’
with # R > n and #C > n®. Then, for any p > 1, the complete unconditional constant of the
sumset RC in LP is at least nl'/2=1/7l,
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Proof. Let ry,...,r, be pairwise distinct elements in R. We shall select inducively elements c1, ..., ¢,
in C such that the r;c; are pairwise distinct. Assume there are cy,...,cy,—1 such that the induction
hypothesis

Vijk<nVjil<m-—1 (i,7)# (k1) = rc; # .

holds. We are looking for an element ¢, € C such that
Vi,k<nVIi<m-—1 ricy, #rra.

Such an element exists as long as m < n because the set {r;lrkcl ti,k <m,l <m—1} has at most
(n(n—1)+1)(m — 1) < n® elements.

The end of the proof is the same as Harcharras’ The unconditional constant of the canonical basis
of elementary matrices in SP is nlt/2=1/pl. in particular, there is an unimodular Schur multiplier ¢
on SP. of norm n!*/2=1/Pl (which is also its complete norm, by the way): see [77, Lemma 8.1.5]. Let
A be the sumset {r;c; : i,j < n}; as the r;c; are pairwise distinct, we may define a sequence ¢ € cA
by ¢r.c; = @ij. By Remark 2.5, the complete norm of the Fourier multiplier ¢ on L is bounded
below by the complete norm of the Schur multiplier ¢ on S%. O

Example 4.9. A = {21—27 : { > j} isnot a complete A(p) set for any p # 2. Indeed, {2¢—27} = AU-A
does not and if A did, then also —4 and AU —A.

5 Toeplitz Schur multipliers on S” for p < 1

When 0 < p < 1, a complete characterisation of bounded Schur multiplier of Toeplitz type has
been obtained by Alexey Alexandrov and Vladimir Peller in [1, Theorem 5.1]. This result was an
easy consequence of their deep results on Hankel Schur multipliers. The transfer approach provides
a direct proof.

Corollary 5.1. Let 0 < p < 1. Let I' be a discrete abelian group with dual group G. Let ¢ be

a sequence indexed by I' and define the associated Toeplitz matriz ¢ € cA by B(r,c) = o(re™t)
for (r,c) € I' x I'. Then the following are equivalent:

(a) The sequence ¢ is the Fourier transform of an atomic measure = agdy on G with > _|ag|P <

1;
(b) The Fourier multiplier ¢ is contractive on LP;

(¢) The Fourier multiplier ¢ is contractive on LP(SP);
(d) The Schur multiplier ¢ is contractive on SP;

(e) The Schur multiplier ¢ is contractive on SP(SP).

Proof. The implication (d) = (b) follows from Lemma 2.2 (a). The equivalence (¢) < (e) follows
from Theorem 2.6 (a). The characterisation (a) < (b) is an old result of Daniel Oberlin [67]. Tt is
plain that (e) = (d). At last, (a) = (c¢) is obvious by the p-triangular inequality. O

Remark 5.2. As a consequence, we get that the norm of a Toeplitz Schur multiplier on SP(SP) coincides
with its norm on S? when p < 1. If p € {1,2, 00}, this holds for every Schur multiplier. Let p € ]1,
2[ U ]2,00[. Then we still do not know whether Schur multipliers are automatically c.b. on SP.
But from [77, Proposition 8.1.3], we know that (b) and (c¢) are not equivalent: if I" is an infinite
abelian group, there is a bounded Fourier multiplier on L? that is not c.b. This example is easy to
describe: if an infinite set A C I" is lacunary enough, the sumset A + A is unconditional in L? (see
[54, Theorem 5.13]); by Proposition 4.8, it cannot be completely unconditional. In particular, this
shows that in Lemma 2.2 (a) we cannot remove the restriction to truncated Toeplitz matrices in the
computation of the Schur multiplier norm, that is, (b) = (d) does not hold.

Remark 5.3. Our questions may also be addressed in the case of a compact group: a measurable
function ¢ on T defines

— the Fourier multiplier on measurable functions on T by z +— ¢z;

— the Schur multiplier on integral operators on L?(T) with kernel a measurable function z on
T x T by x — ¢z, where @(z,w) = p(zw™1).
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Victor Olevskii [69] constructed a continuous function ¢ that defines a bounded Fourier multiplier
on the space of functions with p-summable Fourier series endowed with the norm given by |z| =

(Xl&(n)[P) Y7 for every p € ]1,00[, while the corresponding Schur multiplier is not bounded on the
Schatten-von-Neumann class SP of operators on L?(T) for any p € ]1,2[U]2, 0ol.

6 The Riesz projection and the Hilbert transform

In this section, we concentrate on I' = Z, the dual group of T.

Proposition 6.1. Let g be a linear combination of the identity and the upper triangular projection
of N x N: there are z,w € C so that 0, ; = z if it < j and g;; = w if i > j. Then the norm of the
Schur multiplier o on S¥ coincides with the norm of the Schur multiplier o on S¥(SY).

Proof. Let a € S%(S¥): a may be considered as an m x m matrix (a;;) whose entries a;; are n x n
matrices, and a may be identified with the block matrix

0 air 0 a2
o 0 O O
a=10 a1 0 a2
0O 0 0 O
In this identification, Idgs @ M,(a) is M,(a). O

The Hilbert transform 2 is the Schur multiplier obtained by choosing z = —1 and w = 1. The
upper triangular operators in SP can be seen as a noncommutative HP space, and ¢ corresponds
exactly to the Hilbert transform in this setting (see [83, 58]). Using classical results on HP spaces, all
Hilbert transforms are ¢.b. for 1 < p < oo (see [101, 83, 58]).

On the torus T, the classical Hilbert transform H corresponds to the Fourier multiplier given
by the sign function (with the convention sgn(0) = 1) and its norm on LP is cot (7/2max(p,p’)) =
cse(m/p) + cot(n/p) for 1 < p < co. The story of the computation of this norm starts with a paper
by Israel Gohberg and Naum Krupnik [34] for p a power of 2. The remaining cases were handled
by Stylianos Pichorides [76] and Brian Cole (see [30]) independently. The most achieved results are
those of Brian Hollenbeck, Nigel Kalton and Igor Verbitsky [42], but they rely on complex variable
methods that are not available in the operator-valued case. When p is a power of 2 (or its conjugate),
a combination of arguments of Gohberg and Krupnik [33] with some of Laszl6 Zsidé [101] yields the
following result.

Theorem 6.2. Let p € |1,00[. The norm and the complete norm of the Hilbert transform 5 on SP
coincide with the complete norm of the Hilbert transform H on LP: if s¢n(i,j) = sgn(i—j) fori,j > 1,
[ sén lIncse) = Il s€n [l sy = [l sgn [, we)-

If p is a power of 2, then these norms coincide with the norm of H on LP:

Isén [[naesey = lls€n l[mey(sr) = [Isen [lve, ) = Il sgn llmee) = cot(m/2p).

Proof. Let p > 2. The norm of H on L? is cot(m/2p) and the three other norms are equal by the
transfer theorem 2.6 and the above proposition: we only need to compute the complete norm of H.
Let H = Idg» ® H be the Hilbert transform on L?(tr ®7). We shall use Mischa Cotlar’s trick to go
from L? to L?: the equality sgnisgnj + 1 = sgn(i + j)(sgni + sgn j) shows that

(Hf)(Hg)+ fg=H((Hf)g+ f(Hyg)). (F.7)

First step. The function sgn is not odd because of its value in 0: this can be fixed in the following
way. Let A = 2Z + 1. The norm of H on LP(tr ®7) is equal to its norm on L (tr ®7). In fact, let
D be defined by Df(z) = zf(2?): D is a complete isometry on L? with range L that commutes
with H.
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Second step. Let S be the real subspace of L (tr ®7) consisting of functions with values in S? so that
f(z) is selfadjoint for almost all z € T. Let us apply Vern Paulsen’s off-diagonal trick [71, Lemma 8.1]
to show that the norm of H on L? is equal to its norm on S. Let f € L (tr ®7): identifying S5(SP)

with S7,
9(z) = (f(g)* f%z))

defines an element of S. As adjoining is isometric on S?,

lglls = 221 flle(er or-

- 0 H f)
Hg=| ~ .
! (H(f*) 0
As 0 ¢ A by step 1, the equality sgn(—i) = —sgni holds for i € A: this yields that H(f*) = —(Hf)*.
Therefore

Let us now consider

1Hglls = 2/l H Il (o @r)-

Third step. Let u, be the norm of H on LP(tr @7): then ug, < up+ /T + up. It suffices to prove this
estimate for f € S, and by approximation we may suppose that f is a finite linear combination of
terms a; ® 2° 4 af ® 2~ with a; finite matrices. Note that Hf = —(H f)*. Formula (F.7) with f = ¢
yields, combined with Holder’s inequality,

H(gf)Qlle(tr@T) < HfQHLP(trQ?T) + 2up||f||L2p(tr®'r)HngLZP(tr®T)'
Since f and Hf take normal values,

12 0Le e ory = 1F 1220 e 0y
ICH ) e e or) = [HF 20 (60 0r)-

Therefore, if || f[|r2r(tr or) = 1, ||ﬁf|\L2p(tr @) must be smaller than the bigger root of t* — 2upt — 1,

that is
HHinZP(tr@T) S Up + “;29 +1
and ugp < up + ,/uz%—i—l.

Fourth step. The multiplier H is an isometry on L2(tr ®7), so that us = 1 = cot(mw/4). As cot(¥/2) =
cot ¥ + v/ cot? ¥ + 1 for ¥ € )0, 7[, we conclude by an induction. O

Unfortunately, we cannot deal with other values of p > 2 by this method.

The Riesz projection .7 is the Schur multiplier obtained by choosing z = 0 and w = 1 in Pro-
position 6.1: it is the projection on the upper triangular part. On the torus, the classical Riesz
projection T', that is the projection onto the analytic part, corresponds to the Fourier multiplier
given by the indicator function yz+ of nonnegative integers; its norm on L? has been computed by
Hollenbeck and Verbitsky [43]: it is csc(m/p). As for the Hilbert transform, we know that the norm
and the complete norm of .7 on SP are equal and coincide with the complete norm of T on LP; but,
to the best of our knowledge, there is no simple formula like (F.7) to go from exponent p to 2p. We
only obtained the following computation.

Proposition 6.3. Let p € |1,00[. The norm and the complete norm of the Riesz projection J on SP
coincide with the complete norm of the Riesz projection T on LP: if ¥z+(i,5) = xz+(i—j) fori,j > 1,

IXz+ Imesey = IXz+ (Mo (s7) = X2+ IMoy (1) -

If p =4, then these norms coincide with the norm of T on LP:

X2+ Imese) = X2+ M) = Ixz+ Mo @a) = Xzt s = V2.
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Proof. We shall compute the norm of .7 on S*. Let z be a finite upper triangular matrix and let
y be a finite strictly lower triangular matrix. We have to prove that

V2|2 +yllss > s
Let us make the obvious estimates on S? and use the fact that adjoining is isometric:
|7 (za)|ls2 = 7 ((x + y)az") s> < |z + yllsallzflss
and similarly,
[(Id = 7)(zz")lls2 = [|(Id = T)(2(z + y)")lls> < [Jz]lss ]|z + yllsa-
As 7 and Id — 7 have orthogonal ranges,

1§ = llz2* (|32 = [|(1d = 7)(22") I8 + |7 (@) [E < 2|2/ llz +ylE. O

7 Unconditional approximating sequences

The following definition makes sense for general operator spaces, but we chose to state it only in
our specific context.

Definition 7.1. Let I" be a discrete group and A C I'. Let X be the reduced C*-algebra of I" or its
noncommutative Lebesgue space LP for p € [1, 00].

(a) A sequence (Ty) of operators on X, is an approzimating sequence if each T has finite rank
and Tyx — x for every x € X 4. It is a complete approximating sequence if the T}, are uniformly
c.b. If X admits a complete approximating sequence, then X, enjoys the c.b. approximation
property.

(b) The difference sequence (ATy) of a sequence (T}) is given by ATy = T7 and ATy = Ty, — T—1
for k > 2. An approximating sequence (T%) is unconditional if the operators

> exAT), withn >1ande; € {-1,1} (F.8)
k=1

are uniformly bounded on X 4: then X4 enjoys the unconditional approximation property.

(¢) An approximating sequence (T}) is completely unconditional if the operators in (F.8) are uni-
formly c.b. on X 4: then X4 enjoys the complete unconditional approximation property. The
minimal uniform bound of these operators is the complete unconditional constant of X 4.

We may always suppose that a complete approximating sequence on C, is a Fourier multiplier
sequence: see [36, Theorem 2.1]. We may also do so on L” if L> has the so-called QWEP: see [45,
Theorem 4.4]. More precisely, the following proposition holds.

Proposition 7.2. Let I' be a discrete group and A C I'. Let X either be its reduced C*-algebra or
its noncommutative Lebesgue space LP, where p € [1,00[ and L>° has the QWEP. If X, enjoys the
completely unconditional approrimation property with constant D, then, for every D' > D, there is
a complete approximating sequence of Fourier multipliers () that realises the completely uncondi-
tional approzimation property with constant D’: the Fourier multipliers ZZ:1 exApy are uniformly
completely bounded by D’ on X 4.

Let us now describe how to skip blocks in an approximating sequence in order to construct an
operator that acts like the Riesz projection on the sumset of two infinite sets. The following trick
will be used in the induction below: compare [61, proof of Theorem 4.2]:

1 10 1 1|0 1 11 1 11
0O 1{0)—-1(1 1(0)]+(1 1 1})=10 11
0 0]0 1 1|0 1 11 0 01
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Lemma 7.3. Let I' be a discrete group and A C I'. Suppose that A contains the sumset RC of two
infinite sets R and C. Let (T}) be either an approzimating sequence on LY with p € [1,00[, or an
approzimating sequence of Fourier multipliers on C,. Let € > 0. There is a sequence (r;) in R, a
sequence (¢;) in C and there are indices |1 < ko < ly < ks < ... such that, for every n, the skipped
block sum

Un :ﬂ1 +(ﬂ2 _Tk2)++(ﬂn _Tkn) (F9)

acts, up to €, as the Riesz projection on the sumset {ric;}i j<n:

HUn()‘mcj') - )\TiCjH <e ifi<j<n,
<n

F.10
10O ) < & ifi<i< (F-10)

Proof. Let us construct the sequences and indices by induction. If n = 1, let r; and ¢; be arbitrary;
there is {1 such that ||T}, (Ar,ey) — Arie, || < €. Suppose that r1,...,74, ¢1,...,Cn, l1,.. ., kn, L, have
been constructed. Let § > 0 to be chosen later.

— The operator U,, defined by Equation (F.9) has finite rank. If it is a Fourier multiplier, one
can choose an element r, 1 € R such that Up,(\, ;) = 0 for j < n. If it acts on Lf with
p € [1,00[, one can choose an element 7,41 € R such that ||Upn (A, ;)| < for j < n because
(Ay)ver is weakly null in L?.

— There is kp41 > I, such that [T, ., (Ay) = Ay|| <0 for vy € {ric; : 1 <i<n+1,1<j<n}.
— Again, choose ¢, 1 € C such that |[(Uy, — Tk,,,)(Aricoy)|| <6 fori <n+1.
— Again, choose l4+1 > kp41 such that |77, (Ay) — A, || < d for v € {ric; : 1 <i,j <n+1}.
Let Upy1 =Un + (11, — Thpyy)- If i <n+1and j < n, then

||AU71+1()‘T1'CJ)H < HTln+1 ()\Ticj) - )\TiCjH + ||)\Ticj - Tkn+1 ()\Ticj)ll < 26’

<
<

n+1>

so that

[Uns1(Aric;) = Arie, | <428 ifi<j<n
HUn+1(>\ncj>H <e+2 ifj<i<gn
[Unt1(Arpiaep)ll <36 if j <n.
If i <n+1, then

|‘Un+1()\ricn+l) - /\Ti6n+1H < H(U’ﬂ - Tkn+1)(/\7“icn+1>” + ”Tln+1(>‘ncn+1) - /\Ticn+1H < 26.

This shows that our choice of r,, 41, Cnt1, knt1 and I, 41 is adequate if § is small enough. O
This construction will provide an obstacle to the unconditionality of sumsets.

Theorem 7.4. Let I be a discrete group and A C I'. Suppose that A contains the sumset RC of
two infinite sets R and C.
(a) Let 1 < p < oco. The complete unconditional constant of any approximating sequence for LP is
bounded below by the norm of the Riesz projection on SP, and thus by cscm/p.
(b) The spaces LY and Ca do not enjoy the complete unconditional approximation property.
(¢) If I' is amenable, then the space C, does not enjoy the unconditional approzimation property.

Proof. Let (1)) be an approximating sequence on L. By Lemma 7.3, for every € > 0 and every n,
there are elements rq,...,r, € R, ¢1,...,¢, € C such that the Fourier multiplier ¢ given by the
indicator function of {;c;}i<; is near to a skipped block sum U,, of (T}) in the sense that || Uy, (Ar,c;) —
Oric;Aric; || < €. But Uy is the mean of two operators of the form (F.8): its complete norm will
provide a lower bound for the complete unconditional constant of X 4. Let us repeat the argument
of Lemma 2.4 with € SP: as

n n n n
| 32 aues]y = [ (ews@rn ) (3 aisens 92) (K ess @ )|
ij=1 n i=1 j=1

ij=1

n
= HE Zij€ij @ >‘Ticj

=1

LP(tr ®T)

LP(tr ®T)
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and

< n’ellzsz,

n
i i€ii Q(Un(Arc.) — @roc: Arcs
Hi_zlxz,] z,j®( n( rlcj) @rlcj rlc]) Lp(tr®r)

the complete norm of U, is nearly bounded below by the norm of the Riesz projection on SP:

—n’ellzlsy

n

H E zi e @ Un(Arie;) > HE Tij€ij @ Arie;
. LP(tr ®7) et
i=1 i<

=17 @)llsy, — nellllsy.

LP(tr ®T)

This proves as well (a) as the first assertion in (b), because the Riesz projection is unbounded on S?.
Let (T} ) be an approximating sequence on C4: by Lemma 7.2, we may suppose that (T}) is a sequence
of Fourier multipliers. Thus the second assertion in (b) follows from Lemma 7.3 combined with the
preceding argument (where SP is replaced by S2° and L”(tr ®7) by S2° ® C) and the unboundedness
of the Riesz projection on S™. For (c¢), note that the Fourier multipliers T}, are automatically c.b.
on C, if I' is amenable [25, Corollary 1.8]. O

Theorem 7.4 (b) has been devised originally to prove that the Hardy space H!, corresponding to the
case A =N C Z and p = 1, admits no completely unconditional basis: see [85, 86]. Theorem 7.4 (c)
both generalises the fact that a sumset cannot be a Sidon set (see [54, §§1.4,6.6] for two proofs
and historical remarks, or [51, Proposition IV.7]) and Daniel Li’s result [50, Corollary 13] that the
space C, does not have the “metric” unconditional approximation property if I" is abelian and A
contains a sumset. Li [50, Theorem 10] also constructed a set A C Z such that Cp has this property
while A contains the sumset of arbitrarily large sets. This theorem also provides a new proof that
the disc algebra has no unconditional basis and answers [64, Question 6.1.6].

Ezxample 7.5. Neither the span of products {r;r;} of two Rademacher functions in the space of
continuous functions on {—1, 1}* nor the span of products {s;s;} of two Steinhaus functions in the
space of continuous functions on T have an unconditional basis.
8 Relative Schur multipliers of rank one
Let o be an elementary Schur multiplier on S°°, that is,
0=2®Y = (TrYec)(rc)eRxC

then its norm is sup,.c g|z,| sup.cc|yc|. How is this norm affected if p is only partially specified, that
is, if the action of g is restricted to matrices with a given support?

Theorem 8.1. Let I C R x C and consider (x,)recr and (yc)cec. The relative Schur multiplier
on S given by (z,Ye)(r,c)er has norm SUP(T,C)€[|$ryc|-

Note that the norm of the Schur multiplier (2,y.)(r.c)es is bounded by sup,.c g|2,|sup.cc|yc| be-
cause the matrix (z,yc)(r,c)erxc trivially extends (z,yc)(rc)er; the proof below provides a construc-

tive nontrivial extension of this Schur multiplier that is a composition of ampliations of the Schur
multiplier in the following lemma.

Lemma 8.2. The Schur multiplier (; I;) has norm max(|z|, |w|) on S$°.

Proof. This follows from the decomposition

z w\ _ g+ wl (e 2] = |w] [ tu —
(2 ) = Ll () o g Sl () o

where ¢t,u € T are chosen so that z = |z]t? and w = |w|u?. O

I\
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Proof of Theorem 8.1. We may suppose that C' is the finite set {1,...,m} and that R is the finite
set {1,...,n}, that each y. is nonzero and that each row in R contains an element of I. We may also
suppose that (|2,|)rer and (Jy.|)cec are nonincreasing sequences. For each r € R let ¢, be the least
column index of elements of I in or above row 7: in other words,

¢ = minmin{c: (+',¢) € I}.
r'<r
The sequence (¢, )rcp is nonincreasing. Let us define its inverse (r.)c.ec in the sense that r. < r <

¢r < ¢ for each ¢ € C let 1. = min{r : ¢, < ¢}. Given r, let 7/ < r be such that (+/,¢,) € I: then
|ZrYe,| < |TrYe, |, so that sup,.cglzrye, | < SUp(,. o) er|Trye| and the rank 1 Schur multiplier

Yo = (-Trycr)(r,c)GRXC

with pairwise equal columns is bounded by sup(,. o)es|Zryc| on Sp°. We will now “correct” gy without
increasing its norm so as to make it an extension of (xTyc)(m)e ;- Let r € Rand ¢ > ¢,: then

Yer+1 Y Yet1
Toler = Tpye, 2t 2L H Jetl

= TrlYe,
- S -
Ye, Ye'—1 er<e<el—1 Ye

Yet1
= TrlYe, H Cy—
C

r>re
c'>c+1

This shows that it suffices to compose the Schur multiplier gy with the m — 1 rank 2 Schur multipliers
with block matrix

1--c c+1l - m
1 S
(=]
Ye
re—1
o= ,

. 1 Yet1
Ye

n

each of which has norm 1 on Sg° by Lemma 8.2. O

Remark 8.3. We learnt after submitting this article that Timur Oikhberg proved independently
Theorem 8.1 and gave some applications to it: compare [68].

Remark 8.4. As an illustration, let C = R = {1,..,n} and I = {(r,¢) : r > ¢}, and let a; be
an increasing sequence of positive numbers. Take x, = a, and y. = 1/a.. Then the relative
Schur multiplier (a,/ac)r<c has norm 1. The above proof actually constructs the norm 1 exten-
sion (min(a,/ac, ac/ar)), .- If we put a; = e, we recover that (e~lzr=el), ) is positive definite,
that is, |-| is a conditionally negative function on R.

2000 Mathematics subject classification: Primary 47B49; Secondary 43A22, 43A46, 46B28.

Key words and phrases: Fourier multiplier, Toeplitz Schur multiplier, lacunary set, unconditional
approximation property, Hilbert transform, Riesz projection.



The Sidon constant of sets with three elements

Abstract

We solve an elementary extremal problem on trigonometric polynomials and obtain the exact
value of the Sidon constant for sets with three elements {no,n1,n2}: it is

sec (7 ged(ny — no, n2 — no)/2max |n; — nyl) .

1 Introduction

Let A = {Xo, A1, A2} be a set of three frequencies and gg, 01, 02 three positive intensities. We solve
the following extremal problem:

To find 9o, 91,0 three phases such that, putting ¢; = gje'?, the maximum max; [coe 0t +
creiMt 4 C2ei/\2t| is minimal.

()

This enables us to generalise a result of D. J. Newman. He solved the following extremal problem
for A ={0,1,2}:

To find f(t) = coeot + cret™t + cpe2t with || f|lee = maxy |f(t)] < 1 such that ||]?H1 =
leo| + |e1| + |e2] is maximal.

(1)

Note that for such an f, ||f]|; is the Sidon constant of A. Newman’s argument is the following
(see [94, Chapter 3]): by the parallelogram law,

max |f() = max[f(t)*V |f(t+m)
> max(|f(O)F + [f(t+m))/2

= mtax(|co +ere' + e P+ |eg — cre’ 4 cae™|?) /2

max lco 4+ coe™® 2 + |y |? = (|co| + |C2|)2 + |er|?
2
> (leol + ler] + leal)”/2

and equality holds exactly for multiples and translates of f(t) = 1 + 2ielt + 2t
Let us describe this paper briefly. We use a real-variable approach: Problem () reduces to
studying a function of form

O(t,9) =1 +ree® 4 sel™ 2 forr,s >0, k£l € Z*

and more precisely ®*(¢) = max; ®(¢,9). We obtain the variations of ®*: the point is that we find
“by hand” a local minimum of ®* and that any two minima of ®* are separated by a maximum of
®*, which corresponds to an extremal point of ® and therefore has a handy description. The solution
to Problem (1) then turns out to derive easily from this.

The initial motivation was twofold. In the first place, we wanted to decide whether sets A = {)\,,}
such that A\,4+1/\, is bounded by some ¢ may have a Sidon constant arbitrarily close to 1 and to find

93
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evidence among sets with three elements. That there are such sets, arbitrarily large but finite, may
in fact be proven by the method of Riesz products in [47, Appendix V, §1.IT]. In the second place, we
wished to show that the real and complex unconditionality constants are distinct for basic sequences
of characters e'™!; we prove however that they coincide in the space € (T) for sequences with three
terms.

Notation. T={z€ C:|z|]=1}and e)(z) = 2z* for € T and \ € Z.

2 Definitions

Definition 2.1. (1) Let A C Z. A is a Sidon set if there is a constant C such that for all trigonometric
polynomials f(t) = > \ca cxe'M with spectrum in A we have

IFl =" leal < Cmax |f(B)] = || flloe-

AEA

The optimal C' is called the Sidon constant of A.
(2) Let X be a Banach space. The sequence (z,) C X is a real (vs. complex) unconditional basic
sequence in X if there is a constant C' such that

HZﬂncnxn . < CHchacn

for every real (vs. complex) choice of signs ¥, € {—1,1} (vs. ¥, € T) and every finitely supported
family of coefficients (c,,). The optimal C' is the real (vs. complex) unconditionality constant of ()
in X.

X

Let us state the two following well known facts.

Proposition 2.2. (1) The Sidon constant of A is the complex unconditionality constant of the se-
quence of functions (ex)xea in the space € (T).
(2) The complex unconditionality constant is at most w/2 times the real unconditionality constant.

Proof. (1) holds because |3 ﬂACAe)‘Hoo =>"|ea| for 9y =7<x/|enl-
(2) Because the complex unconditionality constant of the sequence (e,) of Rademacher functions
in €({—1,1}) is 7/2 (see [93]),

sup HZ InCnTn

YV, €T

= sup sup sup ‘g Inen{z™, xpn)en
X z*E€EBxx 9, €T €p==%1

< w2 swp s [ enlet me
T*EBx* €p,==%1

E €nCnln
X

Furthermore the real unconditionality constant of (e,,) in € ({—1,1}°) is 1: therefore the factor 7 /2
is optimal. o

= 7w/2 sup
en==%1

Let us straighten out the expression of the Sidon constant. For
f(t) = coe™! 4 cre™t 4 crel?2t ¢ = el
the supremum norm || f||s of f is equal to

)\17/\2 /\O*>\1
Do + 0
N — 0TI TN

and therefore the Sidon constant C' of A = {\g, A1, A2} may be written

||Qo + Qleiﬁe)q*Ao + QQeAr,\oHooa U= Vo (G-l)

C = max (147 +8)/|1+rees +seifo with 4 =M =20 (G.2)
r,s>0,9 l= )\2 - )\O-

By change of variables, we may suppose w.l.o.g. that k£ and [ are coprime.
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3 A solution to Extremal problem (7)
Let us first establish
Lemma 3.1. Let \q,...,\p € Z* and p1,...,0r > 0. Let
F(t,0) = 14 orei®att00) 14 o eiGumattdin) 4 g oidnt

and ®(t,9) = | (t,9)]2. The critical points (t,9) such that V®(t,9) = 0 satisfy either f(t,9) =0 or
Mt+O1 == 1t +9%—1 = At =0 mod 7.

Proof. As ® = (Rf)? + (Sf)?, the critical points (¢,1) satisfy

{ RIL(E, D) REE D)+ SLL(EI)SF(EY) =0

which simplifies to
—sin(A\it + %) Rf(t,9) + cos(Nit + 0;) Sf(t,9) =0 (1<i<k, ¥ =0).
Suppose that f(t,9) # 0: then the system above implies that
—sin(\t 4+ 9;) cos(Ajt + 9;) + cos(Ast + ;) sin(Ajt +9;) =0 (1 < 4,5 < k, 9, =0)
and it simplifies therefore to
sin(At+9;) =0 (1<i<k, J,=0). O
The following result is the core of the paper.
Lemma 3.2. Letr,s >0, k,l € Z* distinct and coprime. Let
d(t,9) = |1+re?el 4 sellt)?
= 14724 5% 4 2rcos(kt + ) + 2scoslt + 2rscos((l — k)t — ).

Let *(9) = maxt O(t,19). Then O* is an even function with period 2w /|l| that decreases on [0,7/|l|].
Therefore ming ®*(9¥) = ®*(n/1).

Proof. ®* is continuous (see [81, Chapter 5.4]) and even, as ®(t,—9) = &(—t,¢). ®* is (2n/[l])-
periodical: let j € Z be such that j& =1 mod. [. Then

O(t+2jm/l,9) =1+ rel(VH2mik/1) g1kt sellt|2 = ®(t, 9 + 27 /1).
Thus ®* attains its minimum on [0, 7/|l|]. Furthermore, we have
O(—t —2jm/l,w/l —9) = ®(t + 257/l, =7/l + V) = (¢, 7w/l + V),

so that ®* has an extremum at 7/l. Now

&* (/1 + ) = ®* (/1) + |9 —(I)(t,ﬂ/l)‘ +o(®).

0
@(t,w/IlI)ljg*(fr/l)‘ o9
Choose a t such that ®(t,7/l) = ®*(n/l). If 0®/0Y(t,n/l) # 0, then this shows that ®* has a
local minimum and a cusp at 7/l. Let us now suppose that 0®/09(t,7/l) = 0. If ®* had a local
maximum at 7/l then (¢, 7/l) would be a critical point of ®, so that by Lemma 3.1 cos(kt+7/l) =9,
coslt =€, cos((I — k)t — m/l) = de for some §,e € {—1,1}. One necessarily would have (d,¢) # (1,1).
Furthermore,

82
55 (LD
0%® /ot? 82<I>/8t819(
920/0v0t 92 /09>

—2r0(1+se) <0

t,w/l) = 4rsi®*(6e+re+55) =0
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which would imply e = —1, r = 0, s = 1. Therefore ®* has a local minimum at w/l. Let us
show that then ®* must decrease on [0,7/|l|]. Otherwise there are 0 < ¥y < 1 < 7/|l| such that
O*(91) > ®*(Vg). As w/|l| is a local minimum, there is a Yo < 9* < «/|l| such that

o*(¥*)= max @*(¥)= max D({,9),
Do <O< /1] 0<t<2m
do<I<m/|l|

i.e., there further is some t* such that ® has a local maximum at (t*,9*). But then kt*+9* = t* =0
mod 7 and ¥* =0 mod 7/l and this is false. O

By Computation (G.1) and Lemma 3.2, we obtain
Theorem 3.3. Let Mg, A1, A2 € R and 09, 01,02 > 0. The solution to Extremal problem (1) is the
following.

— If the smallest additive group containing A1 — Ao and Ay — Ag is dense in R, then the mazrimum
1s independent of the phases ¥y, %1, %2 and makes oo + 01 + 02.

— Otherwise let d = ged(A — Ao, A2 — Xo) be a generator of this group. Then the sought phases
Yo, V1,2 are given by
190()\2 7)\1)+191(A07/\2)+192(/\1 *)\0) =dm mod 2dr.

In particular, these phases may be chosen among 0 and 7.

4 A solution to Extremal problem (1)

There are two cases where one can make explicit computations by Lemma 3.2.

Ezample 4.1. The real and complex unconditionality constant of {0,1,2} in €(T) is v/2. Indeed, a
case study shows that

-1 if -1
[1+ire1+ sealloc = {T—HS | if rls :

(1+s)(1+72/45)Y/2 ifr|ls—1

and this permits to compute the maximum (G.2), which is obtained for » = 2, s = 1. This yields
another proof to Newman’s result presented in the Introduction.

Ezample 4.2. The real and complex unconditionality constant of {0, 1,3} in €(T) is 2/v/3. Indeed,

a case study shows that |1+ rei™/3e; + ses||, makes
1+7r—s if s<r/(4r+9)
(&s(r? +9+3r/5)3/% — s+ 2r2 4 rs + 2 Jrl)/ ifs>r/(4r+9)

and this permits to compute the maximum (G.2), which is obtained exactly at r = 3/2, s =1/2.
These examples are particular cases of the following theorem.

Theorem 4.3. Let Ao, A1, A2 € Z be distinct. Then the Sidon constant of A = {Mo, \1, A2} is
sec(m/2n), where n = max |A; — Aj|/ ged(A — Ao, A2 — Ao).

Proof. We may suppose A\g < A1 < Ag. Let & = (A — Ao)/ ged(A1 — Ao, A2 — Ag) and I = (Aa — Ag)/
ged(A — Ao, A2 — Ag). By Lemma 3.2, the Arithmetic-Geometric Mean Inequality bounds the Sidon
constant C of {0, k, 1} in the following way:
1+7r+s 1+r+s
C = ma < max —————
rs>0 11+ reim/ley, + se|oo r,5>0 |1 4 relm/l + s|
Ar(1 ~1/2
— max (1 s T rts)
l (1 Jr r+s)?

2
(1 —sin®(m/21) ) = sec(m/2l).

/N
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This inequality is sharp: we have equality for s = k/(l — k) and » = 1 + s. In fact the derivative of
|1+ reim/lelk 4 sel|2 is then

8kl kt+w/l 1t (I—k)t—m/l
COS simn —cos —————,
k—1 2 2 2

so that its critical points are

2541 7 2 2+1 T
- —, =, 1 j €Z,
P R ey R Ty
where it makes
2] +1+1 27+1 2]+ 1+k
452 sin® %w, 472 cos? %ﬂ, 4 cos? ﬁﬂ 1 j € Z.
Therefore the maximum of |1 + re'™!eik* + sel’*| is 21 cos(m/20). O

This proof and (G.1) yield also the more precise
Proposition 4.4. Let A = {\o, A1, A2} C Z. The solution to Extremal problem (1) is a multiple of
f(t) = €o |)\1 — )\2| eikot + €1 |)\0 — )\2| ei)\lt + €9 |)\0 — )\1| ei)\zt

with eg, €1, €2 € {—1,1} real signs such that
— eoe1 = —1 if 27 | A\; — Ao and 27t A\g — Ao for some j;
— eoea = —1 if 27t Ay — Xg and 27 | \g — Ao for some j;
— €169 = —1 otherwise.

The Sidon constant of A is attained for this f. Therefore the complex and real unconditionality
constants of {ex}taea in € (T) coincide for sets A with three elements.

5 Some consequences
Let us underline the following consequences of our computation.

Corollary 5.1. (1) The Sidon constant of sets with three elements is at most /2.

(2) The Sidon constant of {0,n,2n} is \/2, while the Sidon constant of {0,n + 1,2n} is at most
sec(m/2n) = 1+ 72 /8n% + o(n~=2) and thus arbitrarily close to 1.

(3) The Sidon constant of {\g < A1 < A2} does not depend on A1 but on the g.c.d. of \y — Ao and
Ao — Ag.

Theorem 4.3 also shows anew that no set of integers with more than two elements has Sidon
constant 1 (see [94, p. 21] or [21]). Recall now that A = {A,} C Z is a Hadamard set if there is
a ¢ > 1 such that |Ap41/An| = ¢ for all n. By [63, Cor. 9.4], the Sidon constant of A is at most
1+72/(2¢%> —2 — 7%) if ¢ > \/72/2 + 1 = 2.44. On the other hand Theorem 4.3 shows

Corollary 5.2. (1) If there is an integer ¢ > 2 such that A 2 {\, X+ u, A\ + qu} for some integers
A and p, then the Sidon constant of A is at least

sec(m/2q) > 1+ 7%/ (8¢%).

(2) In particular, we have the following bounds for the Sidon constant C of the set A = {q*},
g€ Z\{0,£1,£2}:

72 w2

1 <C<l4+ ——7—.
+ 8max(—q,q+ 1)2 + 2¢2 — 2 — 72
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6 Three questions

(@)

Is there a set A for which the real and complex unconditionality constants of {e)}rca in € (T)
differ? The same question is open in spaces LP(T), 1 < p < oo, and even for the case of three

element sets if p is not a small even integer, and especially for the set {0, 1,2,3} in any space
but L3(T).
Let ¢ > 1. Are there infinite sets A = {A\,} such that |A,4+1/A\n] < ¢ with Sidon constant

arbitrarily close to 17 What about the sequence of integer parts of the powers of a transcendental
number o > 1 (see [63, Cor. 2.10, Prop. 3.2])7

The only set with more than three elements with known Sidon constant is {0,1,2,3,4}, for
which it makes 2 (see [94, Chapter 3]). Can one compute the Sidon constant of sets with four
elements? I conjecture that the Sidon constant of {0, 1,2,3} is 5/3.



The maximum modulus of a trigonometric trinomial

Abstract

Let A be a set of three integers and let Cp be the space of 27-periodic functions with spectrum
in A endowed with the maximum modulus norm. We isolate the maximum modulus points
x of trigonometric trinomials T € C4 and prove that x is unique unless |T'| has an axis of
symmetry. This enables us to compute the exposed and the extreme points of the unit ball of
Ca, to describe how the maximum modulus of T varies with respect to the arguments of its
Fourier coefficients and to compute the norm of unimodular relative Fourier multipliers on Ca.
We obtain in particular the Sidon constant of A.

1 Introduction

Let A1, A2 and A3 be three pairwise distinct integers. Let 1, 72 and r3 be three positive real numbers.
Given three real numbers ¢, t5 and t3, let us consider the trigonometric trinomial

T(x) _ Tlei(tl-i—/\wc) + T2ei(t2+/\2w) 4 T3ei(t3+)\3z) (Hl)

for x € R. The X’s are the frequencies of the trigonometric trinomial 7', the r’s are the moduli or
intensities and the t’s the arguments or phases of its Fourier coefficients r1e'"r, roe'®? and rselts.

Figure H.1: The unit circle, the hypotrochoid H with equation z = 4e ~2* 4+ e!*  the segment from
—1 to the unique point on H at maximum distance and the segments from —e'™/3 to the two points
on H at maximum distance.

The maximum modulus of a trigonometric trinomial has an interpretation in plane geometry.
Without loss of generality, we may assume that A\ is between A\; and A3. Let H be the curve with
complex equation

z=rpelti=Qe=2)e) 4 peiltare=d2)e) (1 g ). (H.2)

99
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H is a hypotrochoid: it is drawn by a point at distance r3 to the centre of a circle with radius
1) A2 — A1]/| A3 — A2| that rolls inside another circle with radius 71|A3 — A1]/| s — A2|. The maximum
modulus of (H.1) is the maximum distance of points z € H to a given point —rze'’? of the complex
plane. If A3 — Ao = Ay — Ay, then H is the ellipse with centre 0, half major axis r; + r3 and half
minor axis |r; — r3|. Note that an epitrochoid (Ptolemy’s epicycle) amounts also to a hypotrochoid.
Figure H.1 illustrates the particular case T'(z) = 4e ~12% 4 eif 4 el2.

We deduce an interval on which 7" attains its maximum modulus independently of the moduli
of its Fourier coefficients (see Theorem 7.1 (a) for a detailed answer.) We prove in particular the
following result.

Theorem 1.1. Let d = ged(A2 — A1, A3 — A2) and let T be the distance of

AQ*Ag A3*>\1 /\1*>\2
t t t H.
g At gkt (H.3)

to 2nZ. The trigonometric trinomial T attains its mazimum modulus at a unique point modulo 27 /d,
with multiplicity 2, unless T = .

Theorem 1.1 shows that if there are two points of the hypotrochoid H at maximum distance to
—ryel®2 it is so only because —rye'?? lies on an axis of symmetry of H.

We obtain a precise description of those trigonometric trinomials that attain their maximum
modulus twice modulo 27/d: see Theorem 7.1 (c). Their role becomes clear by the following result
in convex geometry: they yield the exposed points of the unit ball of the ambient normed space. Let
us first put up the proper functional analytic framework. Let A = {1, A2, A3} be the spectrum of
the trigonometric trinomial 7' and write ey : x — e*®. Let C, be the space of functions spanned by
{ex : X € A}, endowed with the maximum modulus norm. Recall that a point P of a convex set K
is exposed if there is a hyperplane that meets K only in P; P is extreme if it is not the midpoint of
any two other points of K.

Theorem 1.2. Let K be the unit ball of the space Cx and let P € K.

(a) The point P is an exposed point of K if and only if P is either a trigonometric monomial e'®e
with a € R and X € A or a trigonometric trinomial that attains its mazximum modulus, 1, at
two points modulo 27 /d. Every linear functional on C, attains its norm on an exposed point
of K.

(b) The point P is an extreme point of K if and only if P is either a trigonometric monomial e'®e

with a € R and X\ € A or a trigonometric trinomial such that 1 — |P|2 has four zeroes modulo
27t /d, counted with multiplicities.

We describe the dependence of the maximum modulus of the trigonometric trinomial 7" on the
arguments. The general issue has been studied for a long time; [52, 91] are two early references. In
particular, the following problem has been addressed: see [26, page 2 and Supplement].

Extremal problem 1.3 (Complex Mandel’shtam problem). To find the minimum of the maximum
modulus of a trigonometric polynomial with given Fourier coefficient moduli.

It appeared originally in electrical circuit theory: “L. I. Mandel’shtam communicated to me a
problem on the phase choice of electric currents with different frequencies such that the capacity of
the resulting current to blow [the circuit] is minimal”, tells N. G. Chebotarév in [24, p. 396], where
he discusses applications of a formula given in Section 9 that we would like to advertise.

Our main theorem solves an elementary case of the complex Mandel’shtam problem.

Theorem 1.4. The maximum modulus of T as defined in (H.1) is a strictly decreasing function of
T as defined in Theorem 1.1. In particular,

min max|rye (1N 4yl TA20) g elatXen)| — max|eyry o7 4 earye2 4 egrze7|
ti,t2,ts T
if €1, €2 and €3 are real signs +1 or —1 such that e;e; = —1, where 1,7,k is a permutation of 1,2,3

such that the power of 2 in A\; — A; is greater than the power of 2 in A\j — A\, and in Ay — A;j.
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This shows that the maximum modulus is minimal when the phases are chosen in opposition,
independently of the intensities ry, o and r3.
The decrease of the maximum modulus of (H.1) may be bounded as shown in the next result.

Theorem 1.5. Let d and 7 be defined as in Theorem 1.1. Suppose that Ao is between Ay and 3. The
quotient of the maximum modulus of T by ‘7’1 + roeliTd/As—Aal 4 Tg‘ is a strictly increasing function
of T unless r1 : r3 = |A3 — Aa| 1 |A2 — A1, in which case it is constantly equal to 1.

When r1 : 73 = | A3 — A2| : [A2 — A1}, the hypotrochoid H with equation (H.2) is a hypocycloid with
A3 — A1|/d cusps: the rolling point is on the rolling circle. Note that an epicycloid amounts also to
an hypocycloid. Figure H.2 illustrates the particular case T'(x) = (1/3)e =122 4 eit + (2/3)ei®.

Figure H.2: The unit circle, the deltoid H with equation z = (1/3)e =122 4 (2/3)e!®, the segment from
—1 to the unique point on H at maximum distance and the segments from —e'™/3 to the two points
on H at maximum distance.

We may deduce from Theorem 1.5 a less precise but handier inequality.

Theorem 1.6. Let d and 7 be defined as in Theorem 1.1. Let

max(|A2 — 1], [A3 = Ao, [Az — A1)
ged(A2 — A1, A3 — A1)

D= (H.4)

be the quotient of the diameter of A by d. Let t}, t, and t5 be another three real numbers and define
correspondingly . If T > 7', then
max Tlei(t1+)\1z) + T2ei(t2+)\2z) + rgei(tg-i-)\gm)‘
xr

COS(T/QD) i(t + iz i(th+ Ao i(th+ A3z
/Wmax|rle(l )+T26(2 )+7«3€(3 3T)
with equality if and only if r1 : 719 113 = [As — Aa] 1 |As — A1 = [Aa — Aq].

Figure H.3 illustrates the inequalities obtained in Theorems 1.5 and 1.6 for the particular case
T(z) = 4e™12% 4 eit 4 ¢1 as in Figure H.1.

If we choose 7/ = 0 in Theorem 1.6, we get the solution to an elementary case of the following
extremal problem.

Extremal problem 1.7. To find the minimum of the maximum modulus of a trigonometric poly-
nomial with given spectrum, Fourier coefficient arguments and moduli sum.

Theorem 1.8. Let 7 be defined as in Theorem 1.1 and D be given by (H.4). Then

maxz‘rlei(tlJrAlz) +T26i(t2+A21) +T36i(t3+A3I)’

> cos(1/2D
ry+1re+4+1r3 (/ )

with equality if and only if T =0 orry 1 re : 13 =|A3 — A2| 1 [Az — A1] : | A2 — Aq].
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i ‘ ‘
m = max |[4e ** + et 4 ™|
xT

ym =4+ e 41

. |

",
Y= (4 41+ 1)cos(t/2)
|

w
0 /3

t

Figure H.3: Let H be the hypotrochoid with equation z = 4e~'?* + e¢!*. This plot shows the
maximum distance m of points z € H to the point —e' and the two estimates of this maximum
distance provided by Theorems 1.5 and 1.6 for ¢ € [0, 7/3].

The dependence of the maximum modulus of (H.1) on the arguments may also be expressed as
properties of relative multipliers. Given three real numbers ¢, t2 and t3, the linear operator on
C4 defined by ey; — eltie A; 18 a unimodular relative Fourier multiplier: it multiplies each Fourier
coefficient of elements of C4 by a fixed unimodular number; let us denote it by (¢1,t2,t3). Consult
[40] for general background on relative multipliers.

Theorem 1.9. The unimodular relative Fourier multiplier (t1,to,t3) has norm
cos((m — 7)/2D) / cos(w/2D),
where T is defined as in Theorem 1.1 and D is given by (H.4), and attains its norm exactly at functions
of the form
rlei(ul-',-)qz) + r2€i(u2+)\2£€) + rsei(us+x\sw)
with M iT9 T3 = |)\3 — )\2| : |)\3 — )\1| : |)\2 — )\1| and

Ao — A3 A3 — A\p Al — Ao
p u + d u2 + d

uz =7 mod 2.

The maximum of the norm of unimodular relative Fourier multipliers is the complex unconditional
constant of the canonical basis (ey,, ex,,exs) of Ca. As

ri+re+ry= max‘rle"\lz +roeit2?® 4 rge‘ksm‘,
x

this constant is the minimal constant C such that
r1+re+ry < Cmax|rlei(“1+”\””) + roei(uatier) 4 Tgei(“3+’\3:”)|;
€T

it is therefore the Sidon constant of A. It is also the solution to the following extremal problem.

Extremal problem 1.10 (Sidon constant problem). To find the minimum of the maximum modulus
of a trigonometric polynomial with given spectrum and Fourier coefficient moduli sum.

Setting 7 = 7 in Theorem 1.9, we obtain the following result.

Corollary 1.11. The Sidon constant of A is sec(mw/2D), where D is given by (H.4). It is attained
exactly at functions of the form given in Theorem 1.9.

Finally, we would like to stress that each of the above results gives rise to open questions if the
set /A is replaced by any set of four integers.

Let us now give a brief description of this article. In Sections 2 and 3, we use carefully the inva-
riance of the maximum modulus under rotation, translation and conjugation to reduce the arguments
t1, to and t3 of the Fourier coefficients of the trigonometric trinomial 7" to the variable 7. Section 4
shows how to further reduce this study to the trigonometric trinomial

Tleiikm +T26it +7’3€ilm (H5)
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with k& and [ positive coprime integers and ¢ € [0, 7/(k+1)]. In Section 5, we prove that (H.5) attains
its maximum modulus for = € [—t/k,t/l]. Section 6 studies the variations of the modulus of (H.5)
for x € [—t/k,t/l]: it turns out that it attains its absolute maximum only once on that interval.
This yields Theorem 1.1. Section 7 restates the results of the two previous sections for a general
trigonometric trinomial 7. Section 8 is dedicated to the proof of Theorem 1.2. In Section 9, we
compute the directional derivative of the maximum modulus of (H.5) with respect to the argument ¢
and prove Theorems 1.4, 1.5, 1.6 and 1.8. In Section 10, we prove Theorem 1.9 and show how to lift
unimodular relative Fourier multipliers to operators of convolution with a linear combination of two
Dirac measures. Section 11 replaces our computation of the Sidon constant in a general context; it
describes the initial motivation for this research.

Part of these results appeared previously, with a different proof, in [64, Chapter I1.10] and in [62].

Notation. Throughout this article, A1, A2 and A3 are three pairwise distinct integers, A is the set
{A1, A2, A3} and d = ged(A2 — A, A3 — A2). If X is an integer, ey is the function = — e™* of the
real variable x. A trigonometric polynomial is a linear combination of functions ey; it is a monomial,
binomial or trinomial if this linear combination has one, two or three nonzero coefficients, respectively.
The normed space C4 is the three-dimensional space of complex functions spanned by ey with A € A,
endowed with the maximum modulus norm. The Dirac measure 0, is the linear functional T +— T'(z)
of evaluation at = on the space of continuous functions. Given three real numbers t1, t5 and t3, the
linear operator on C, defined by ey, — eits ey, is a unimodular relative Fourier multiplier denoted

by (tl,tg,t3).
2 Isometric relative Fourier multipliers

The role of Quantity (H.3) is explained by the following lemma.

Lemma 2.1. Let t1, to and t3 be real numbers. The unimodular relative Fourier multiplier M = (t1,
ta,t3) is an isometry on C, if and only if

Ay — A Az — A A=A
2d 2t + 3d Ly + 1d 2ty € 277 (H.6)

Then it is a unimodular multiple of a translation: there are real numbers o and v such that M f(x) =
el f(x —wv) for all f € Cy and all x € R.

Proof. If M is a unimodular multiple of a translation by a real number v, then
rpel(FA) oy @it Aov) gl AV | = o) oy g,
which holds if and only if
t1 + AMv=1tg + Xv =13+ A3v modulo 27. (H.7)

There is a v satisfying (H.7) if and only if Equation (H.6) holds as (H.7) means that there exist
integers a1 and ag such that

_tg—t1+27m1_t2—t3—|—27m3
I VI VO VO VR

If t1, t2 and t3 are three real numbers satisfying (H.6), let v be such that (H.7) holds. Then

Tlei(tl—i-ul-i-)qz) + T2ei(t2+u2+)\2z) + Tgei(tg-l-u;).-l-)\gz)

— ei(t2+)\2v) (Tlei(ulJr)\l(va)) + T2ei(u2+A2 (z—0)) + rsei(ung)\g(acfv)))

for all real numbers wuy, uo, us and z. O
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3 The arguments of the Fourier coefficients of a trigonometric trinomial

We have used a translation and a rotation to reduce the three arguments of the Fourier coefficients of
a trigonometric trinomial to just one variable. Use of the involution f(—z) of C, allows us to restrict
even further the domain of that variable.

Lemma 3.1. Let tq, ty and t3 be real numbers and let to be the representative of

AQ*Ag )\1*A2
t t
NN 1+ 2+)\3_)\1

t3 (H.8)

modulo 27 /|A3 — A1 in [—wd/|As — M|, wd/|As — M [

(a) There are real numbers o and v such that

rlei(tl—i-klz) + T2ei(t2+kgm) + T3ei(t3+)\3z) — eia (Tlei)q(z—'u) + T2ei(fg+k2(z—'u)) + rseikg(m—v)))

(H.9)
for all x.
(b) Let t = |ta] be the distance of (H.8) to (2md/|A\3 — A1|)Z. There is a sign € € {+1,—1} such
that
‘rlei(tl—i-klz) + T2ei(t2+kgm) + T3ei(t3+)\3z)’ — ’Tlei)\la(m—v) + T2ei(t+)\28(m—v)) + rgei)\ga(z—'u))’
for all x.

Proof. (a). The argument #5 is chosen so that the relative multiplier (¢,ty — fo,%3) is an isometry.
(b). If £ is negative, take the conjugate under the modulus of the right hand side in (H.9). O

Remark 3.2. This proves the following periodicity formula:
‘rlei/\lz + T2ei(t+27rd/(/\37/\1)+/\gz) + T3ei/\3x’ — ’Tlei)\l(va) + T2ei(t+/\2(m7v)) + rgei/\g(zfv)’
for all « and ¢, where v satisfies \yv = 27wd/(A3 — A1) + A2v = Agv modulo 27, that is

2 A3 — A Az — A
= " 7117;1 with m an inverse of % modulo 22 ] L

v

4 The frequencies of a trigonometric trinomial

We may suppose without loss of generality that Ay < A2 < Ag. Let k = (Aa—A1)/dand ] = (A3—X2)/d.
Then

rlei(tl—i-klz) + T2ei(t2+kgm) + T3ei(t3+k3z) — ei)\gz(rlei(h—k(dm)) + 7‘26it2 + rsei(tg-i-l(dz)))

This defines an isometry between C4 and Cy_j o3 and shows that C, is normed by the maximum
modulus norm on [0,27/d[. With Lemma 3.1 (b), this shows that a homothety by d=! allows us to
restrict our study to the function

flt,x) = |rie ™ £ rpelt 4 rge”””‘2
for # € R with k and [ two positive coprime numbers and ¢ € [0,7/(k -+ )]. We have
f(=t,z) = f(t,—x) (H.10)
and Remark 3.2 shows that
ft+2m/(k+1),2) = f(t,x —2mn/(k +1)) (H.11)

for all  and ¢, where m is the inverse of [ modulo k 4 [. In particular, if ¢t = 7/(k + ), we have the
symmetry relation

f(r/(k+1),2) = f(x/(k+1),2mn/(k+1) — z). (H.12)
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5 Location of the maximum point

The purpose of our first proposition is to deduce the existence of a small interval on which a tri-
gonometric trinomial attains its maximum modulus. Note that a trigonometric binomial attains its
maximum modulus at a point that depends only on the phase of its coefficients:

- ‘rle_”” + 7’2€it| attains its maximum at —t/k independently of r; and ro,

— ‘rle_”” + rgeilz| attains its maximum at 0 independently of r; and r3,

— ‘rgeit + rge”””‘ attains its maximum at ¢/l independently of ro and r3.

The next proposition shows that if the point at which a trigonometric trinomial attains its maximum
modulus changes with the modulus of its coefficients, it changes very little; we get bounds for this
point that are independent of the intensities.

Proposition 5.1. Let k and | be positive coprime integers. Let r1, ro and r3 be three positive real
numbers. Let t € [0,7/(k+1)]. Let
f(@) = |rie ™ 4 rpelt 4 rg,eil””]2

for x € R.
(a) The function f attains its absolute maximum in the interval [—t/k,t/l].

(b) If f attains its absolute mazimum at a point y outside of [—t/k,t/l] modulo 2m, thent = w/(k+1)
and 2mw /(k + 1) —y lies in [—t/k,t/l] modulo 27, where m is the inverse of | modulo k + .

Proof. (a). We have
f(@)=ri+r3+7r5+2- (riracos(t + kz) + rirs cos((k + 1)x) + rars cos(t — lz)). (H.13)

Let us prove that f attains its absolute maximum on [—t/k,t/l]. Let y be outside of [—t/k,t/]]
modulo 27. Let I be the set of all x € [—t/k,t/l] such that

cos(t + kx) > cos(t + ky)
cos((k +1)z) = cos((k + 1))
cos(t — lx) = cos(t — ly).

Note that if = € [—t/k,t/], then

t+kxel0,(k+1)t/]]
(k4 Dz € [—(k+D)t/k, (k+1)t/]]
t—lzel0,(k+1)t/k],

and that (k +)t/k, (k+1)t/l € [0,7]. Let
— « be the distance of t/k + y to (27 /k)Z,
— f8 be the distance of y to (27/(k +1))Z,
— 7 be the distance of ¢/l — y to (27/1)Z.
Then
I=[—t/k,t/l|N[-t/k —a,—t/k+a]N[-B,B8]N[t/l —~,t/l+7]. (H.14)

Let us check that I is the nonempty interval
I = [max(—t/k,—B,t/l —~),min(t/l, —t/k + o, B)]. (H.15)

In fact, we have the following triangular inequalities:
— —B < —t/k + a because t/k is the distance of (t/k +y) —y to 27 /k(k +1))Z;
— t/l — v < —t/k + « because t/l + t/k is the distance of (¢t/k +y) + (t/l — y) to (27 /kl)Z;
— t/l — v < B because t/l is the distance of (t/l —y) +y to (2w /l(k +1))Z.
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The other six inequalities that are necessary to deduce (H.15) from (H.14) are obvious.

(b). We have proved in (a) that there is an @ € [—t/k,t/l] such that cos(t + kxz) > cos(t + ky),
cos((k 4+ 1)z) = cos((k +1)y) and cos(t — lz) > cos(t — ly). In fact, at least one of these inequalities
is strict unless there are signs d,¢,n7 € {—1,1} such that ¢t + kx = §(t + ky), t — lx = e(t — ly) and
(k 4+ 1)z = n(k + 1)y modulo 27. Two out of these three signs are equal and the corresponding two
equations imply the third one with the same sign. This system is therefore equivalent to

k(z—y)=0 klx+y)=—2t
l(lx—y)=0 o l(lx+y)=2t

modulo 27. The first pair of equations yields x = y modulo 27 because k and [ are coprime. Let m
be an inverse of [ modulo k + [; then the second pair of equations is equivalent to

{2(kz+l)t:O

z+y=2mt

modulo 2w. Therefore g does not attain its absolute maximum at y unless t = 7/(k + [) and
2mr/(k+1) —y € [-t/k,t/]]. O

Remark 5.2. This proposition is a complex counterpart to Lemma 2.1.4) in [84], where cosine trino-
mials are investigated.

6 Uniqueness of the maximum point

Note that
Tlefikx + Tgeit + rgeilac _ rgefil(fx) + 7,2eit + Tleik(fz)
s : sl
:Tlleflkm +T261t+7,/3€1lz
with rf =73, v =7, ¥ =1, ' = k and 2/ = —x. We may therefore suppose without loss of

generality that krqy <lrs.

Our second proposition studies the points at which a trigonometric trinomial attains its maximum
modulus. Note that if k =1 =1, the derivative of |f|2 has at most 4 zeroes, so that the modulus of
f has at most two maxima and attains its absolute maximum in at most two points. Proposition 6.1
shows that this is true in general, and that if it may attain its absolute maximum in two points, it is
so only because of the symmetry given by (H.12).

Proposition 6.1. Let k and l be positive coprime integers. Let r1, ro and r3 be three positive real
numbers such that krq < lrs. Lett € |0,7/(k+1)]. Let

f(@) = |rie ™ 4 ryelt 4 rgeill|2
for x € [—t/k,t/].
(a) There is a point z* € [0,t/1] such that df/dx > 0 on |—t/k,z*[ and df/dz < 0 on ]x*,t/I[.
(b) There are three cases:
1. f attains its absolute maximum at 0 if and only if kry = lrs;
2. [ attains its absolute mazimum at t/l if and only if | =1, t = w/(k+1) and k*rira + (k+
1)%rirs — rors < 05
3. otherwise, f attains its absolute mazimum in ]0,t/l[.
(¢) The function f attains its absolute mazimum with multiplicity 2 unlessl =1,t =n/(k+1) and

k*rire + (k + 1)2r17r3 — rors3 = 0, in which case it attains its absolute mazimum at w/(k + 1)
with multiplicity 4.
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Proof. (a). By Proposition 5.1, the derivative of f has a zero in [—t/k,t/l]. Let us study the sign of
this derivative. Equation (H.13) yields

Ldf
2dzx
We wish to compare sin(¢ + kx) with sin(¢t — lz): note that
sin(t + kz) — sin(t — lz) = 2sin((k + )z/2) cos(t + (k — )z/2),
and that if x € [—-t/k,t/l], then
—m/2< —7m/2k < —(k+1Dt/2k < (k+Dx/2 < (k+1D)t/2l < n/2l < /2
t+ (1= k)t/2k = (k +D)t/2k if k
t4 (k—Dt/2l = (k+t/2l il

(z) = —krirgsin(t + kz) — (k + U)rirgsin((k + 1)x) + lrorg sin(t — lz). (H.16)

0<t+(k—Dzx/2 < { < /2.

<1
<k

Suppose that € [—t/k,0[: then it follows that sin(t+ kz) < sin(t—lz) and also sin((k+1)z) <0,
with equality if and only if Kk =1 and —z =¢ = 7/(1 +1). This yields with kry < lrs that
1df
2 dx
with equality if and only if k =1 and —x =¢ = 7/(1 + ).
Suppose that z € [0,¢/1]. If [ > 2, then
t+kxelt,(k+Dt/l] C[t,7/2]
(k+ Dz el0,(k+Dt/l] C[t,7/2]
t—lz €[0,t] C[0,7/3],

(z) = —(k+ Drirgsin((k + 1)z) >0 (H.17)

so that the second derivative of f is strictly negative on [0,¢/]: its derivative is strictly decreasing
on this interval and (a) is proved. If | = 1, let g(z) = f(t — ) for « € [0,t]: we have to prove that
there is a point z* such that dg/dz > 0 on |0,2*[ and dg/dx < 0 on ]z*,t[. We already know that
(dg/dz)(0) > 0 and that dg/dz has a zero on [0,t]. Put o = (k + 1)¢: then

1d
§d_g(z) = krirosin(a — kx) + (k4 1)rirs sin(a —(k+ 1)z) — rorgsinx
T
and it suffices to prove that
1 d i —k si —(k+1
- —g(fﬁ) = kmmw + (k4 1)rirs m(a .( )z) — rors (H.18)
2sinx dx sin x sin x

is a strictly decreasing function of 2 on |0, «/(k 4 1)]. Let us study the sign of

d sin(a —kx)  —kcos(a — kx)sinz —sin(a — kz) cosz

dx sin sin

for o €10, 7] and = € 10, a/k]. If k =1, then

—kcos(a — kz)sinx — sin(a — kx) cosz = —sina < 0
and the inequality is strict unless @ = . Let us prove by induction on k that
k cos(ar — kx) sinz + sin(a — kx) cosxz > 0
for all k > 2, @ € ]0, 7] and = € |0, «/k]. This will complete the proof of (a). Let k > 1 and z € ]0,
a/(k+1)]. Then
(k+1)cos(a — (k+1)z) sinz + sin(a — (k + 1)z) cos x
= (k+1)cos(a — kx) coszsinz + (k + 1) sin(a — kz) sin® z
+sin(a — kx) cos® & — cos(a — ka) sin 2 cos
= (kcos(a — kx) sinz + sin(o — kz) cos x) cos x
+(k + 1) sin(a — kz) sin? z
> (k4 1)sin(a — kz)sin®z > 0
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(b). 1. By Proposition 5.1 and (a), f attains its absolute maximum at 0 if and only if 0 is a
critical point for f. We have

1d
——f 0) = (lrg — kry)rosint > 0
2d
x
and equality holds if and only if kry = lrs.
2. We have 1d
S <Lt/ = (hrirs — 4 Drurs) sin((k -+ D1/1) <0

and equality holds if and only if /=1 and t =7/(k+1). Let [ =1 and t = 7/(k + 1) and let us use
the notation introduced in the last part of the proof of (a): we need to characterise the case that g
has a maximum at 0. As a = 7 and

1 dg

2sinx dx

(z) = k*rire + (k4 1)%r173 — ror3 + o(2) (H.19)

is a strictly decreasing function of x on ]0,7/(k + 1)], g has a maximum at 0 if and only if k?riry +
(k + 1)27"17"3 — TaTrs3 g 0.

(¢). If I > 2, then the second derivative of f is strictly negative on [0,¢/l]. If [ = 1, then the
derivative of (H.18) is strictly negative on ]0,a/(k + 1)]: this yields that the second derivative of g
can only vanish at 0. By (b) 2., g has a maximum at 0 only if ¢ = 7/(k + 1); then

1.d%g

5@(0) = k*riro + (k+ 1)%rirs — rors (H.20)
1d'g 4 4
5@(0) = —k'rirg — (k+1)%rirs 4+ 7273 (H.21)

If (H.20) vanishes, then the sum of (H.21) with (H.20) yields

1 d4g

5151 (0 = —k(k + Dri ((k = Dkro + (k + 1) (k + 2)rs) <0. n
Remark 6.2. We were able to prove directly that the system
f@) = f(y)
Lw=Lw=0
d2f . d3f

@(z), @(y) <0

implies = y modulo 27 or t = 7/(k 4+ 1) and = + y = 2mn/(k + [), but our computations are very
involved and opaque.

Remark 6.3. This proposition is a complex counterpart to [84, Lemma 2.1.ii)].

Remark 6.4. Suppose that [ = k = 1. If t € ]0,7/2], it is necessary to solve a generally irreducible

quartic equation in order to compute the maximum of f. If ¢ = x/2, it suffices to solve a linear
equation and one gets the following expression for max, ‘rle_iﬂ” + ire + rgei””‘ :

{(rl +r3)\/1+7r3/4rirs if ‘rl_l —7“3_1’ < d4ryt

ro + |r3 — 71| otherwise.

This formula appears in [2, (3.1)]. In the first case, the maximum is attained at the two points z*
such that sinx* = ro(rs — r1)/4rirs.

Remark 6.5. Suppose that | = 1 and &k = 2. If ¢t € ]0,7/3], it is necessary to solve a generally
irreducible sextic equation in order to compute the maximum of f. If ¢ = x/3, it suffices to solve
a quadratic equation and one gets the following expression for max, |Tle_i2”” + 1roe!™/3 frgelt| 1 if
rit —4ryt < 9ry!', then its square makes

s 25 r2\? T2 KPR
r1+§T2+T3+T1T2+2T1T3 (%) +o-+1 —(—)
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and the maximum is attained at the two points x* such that

ra \2 | T2 Y2y
2cos(m/3 —a*) = ((—) +—+1) - —

otherwise, it makes —ry + 79 + r3.

7 The maximum modulus points of a trigonometric trinomial

If we undo all the reductions made in Sections 3 and 4 and at the beginning of Section 6, we get the
following theorem.

Theorem 7.1. Let A\, Ao and A3 be three pairwise distinct integers such that o is between \1 and
As. Let r1, ro and r3 be three positive real numbers. Given three real numbers t1, to and ts, consider
the trigonometric trinomial

T(:L') _ Tlei(tl—i-klm) + T26i(t2+kgz) + Tgei(tg-i-)\gz)

for x € R. Let d = ged(A2 — A1, A3 — A2) and choose integers a1 and as such that

Ao — A Az — A A1 — A
T:%(tl—Qﬂ'al)—f— 3d 1t2+ 1d 2(t3—27ra3),

satisfies |T| < w. Let t; =t — 2way and t3 = t3 — 2mas.

(a) The trigonometric trinomial T attains its maximum modulus at a unique point of the interval
bounded by (t; — t2)/(Ma — A1) and (t2 —t3)/(A3 — A2). More precisely,
— if r1|A2 — M| < r3|A3 — Aa|, then this point is between (t1 —13)/ (A3 — A1) and (ta—13)/ (A3 —

A2);

— if r1|]A2 — A\1| = r3| A3 — Aa|, then this point is between (t1 —13)/ (A3 — A1) and (t1 —t2) /(A2 —
A1);

— T attains its maximum modulus at (t1 —13)/(A3— A1) if and only if 11| Ao — 1| = r3| A3 — A2
or 7 =0.

(b) The function T attains its mazimum modulus at a unique point modulo 2w /d, and with multi-
plicity 2, unless |t| = .
(¢) Suppose that |T| =7, i.e.,
A2 — A3 Az — A AL — A2

P t1 + P to + d tz3 =7 mod 27. (H.22)

Let s be a solution to 2t1 + A\1s = 2ta + Aas = 2t3 + A3s modulo 27: s is unique modulo 27/d.
Then T(s — ) = €227 () for all . Suppose that |A3 — Xa| < |Xa — M\1|. There are three

cases.

1. If Ao — Ay = k(A3 — A2) with k > 2 integer and

it = KAyt > (kF1)%r

then T attains its mazimum modulus, —r1 + ro + 73, only at x = (ta — t3)/(A\3 — A2)
modulo 27 /d, with multiplicity 2 if the inequality is strict and with multiplicity 4 if there
is equality;

2. Zf)\g — )\1 = )\3 — )\2 and

it =it = 4rg

then T attains its mazimum modulus, ro + |rs —r1|, at a unique point x modulo 27 /d, with
multiplicity 2 if the inequality is strict and with multiplicity 4 if there is equality. This
point 8 (tg — 1?3)/()\3 — )\2) if?“l <rs, and (2?1 — tg)/()\g — )\1) if?“g <7ri,

3. otherwise T attains its mazimum modulus at exactly two points x and y modulo 27 /d, with
multiplicity 2, where x is strictly between (t; —t2)/(Aa — A1) and (t2 —#3)/ (A3 — A2), and
x +y =8 modulo 2r/d.

Note that s — x = x modulo 27/d in Cases 1 and 2.
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8 Exposed and extreme points of the unit ball of C,

The characterisation of the maximum modulus points of a trigonometric trinomial enables us to
compute the exposed and the extreme points of the unit ball of C4. We begin with a lemma.

Lemma 8.1. (a) A trigonometric trinomial with a given spectrum that attains its mazimum mo-
dulus at two given points modulo 27 /d is determined by its value at these points.

(b) The trigonometric trinomials with a given spectrum that attain their maximum modulus with
multiplicity 4 at a given point and have a given value at this point lie on a parabola.

Proof. We will use the notation of Theorem 7.1. Without loss of generality, we may suppose that
A1 = —k, A2 = 0 and A3 = [ with k£ and [ positive coprime integers. Let x and y be two real numbers
that are different modulo 27/d, let 9 and ¢ be real numbers and let ¢ be a positive real number.

(a). Let us prove that at most one trigonometric trinomial 7" attains its maximum modulus at
and y and satisfies T'(z) = ge'” and T'(y) = pe¢. Let us translate T' by (z-+¥)/2: we may suppose that
x4y =0. Let us divide T by e!(?+9/2: we may suppose that ¥ + ¢ = 0. As T attains its maximum
modulus at the two points x and y, we have s =x4+y =0and 2t —ks =2t; =2t3+Ils=9+(=0
modulo 27. Therefore t; = to = ¢t3 = 0 modulo 7. Let p; = e'%ir;: the p; are nonzero real numbers.
We have

—ikx

T(x) = pre 5 + ps + pse'l™ = e,

so that, multiplying by e 7 and taking real and imaginary parts,

p1 cos(V + kx) + ps cos(¥ — lx) = o — pa cosd (H.23)
p1sin(¥ + kxz) + pssin(¢ — lz) = —posin . (H.24)
The computation
1d|T] dr

5 dx (z) = %(Wa(w)) = %(m(—ikzplefim + ilp3e”z)),

yields

kpq sin(¥ + kx) — Ipssin(d — lz) = 0. (H.25)
Equations (H.24) and (H.25) yield p; and p3 as linear functions of pa because sin(¥+ kx) sin(¢ — lz) #
0: otherwise both factors would vanish, so that ¥ = x = 0 modulo 7 and x = y modulo 27. As p # 0,
Equation (H.23) has at most one solution in ps.

(b). We are necessarily in Case 1 or 2 of Theorem 7.1(c), so that we may suppose that [ = 1. Let us
determine all trigonometric trinomials 7" that attain their maximum modulus at  with multiplicity
4 and satisfy T'(z) = pe'”. Let us translate T by 2: we may suppose that z = 0. Let us divide T’ by
e!”: we may suppose that ¥ = 0. As T attains its maximum modulus at 0 with multiplicity 4, we
have s — 0 = 0 and 2¢1 — ks = 2ty = 2t3 + s = 219 = 0 modulo 2x. Therefore t; = to = t3 = 0 modulo
m. Let p; = e''ir;: the p; are nonzero real numbers and satisfy the system

P1+p2+p3=2¢o
k*pips + (k 4+ 1)°p1ps + paps = 0,

that is

pP2=0—pP1—P3

(kp1 —ps)® = o(kp1 + ps).
This is the equation of a parabola. O
Remark 8.2. The equality

max|reltithe) 4 rgei(t2+’\2z)‘ =7y 419 (H.26)
xr

shows that the exposed points of the unit ball of the space Cyy, x,} are the trigonometric monomials
el®ey, and ei“e,, with @ € R and that no trigonometric binomial is an extreme point of the unit
ball of C4.
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Proof of Theorem 1.2 (a). Necessity. Let f € K. Let us make four remarks:
— if f is an exposed point, then ||f|| = 1;

— if [ is a nonzero linear functional on C,4 and z is a complex number such that [=*(z) N K = {f},
then [I(f)| = |z| = ||I||, so that ! attains its norm at f;

— f is exposed if and only if || f|| = 1 and there is a nonzero linear functional I on C4 that attains
its norm only at multiples of f;

— if [ is a linear functional on C, that attains its norm at f and p is the measure on [0, 27/d|
identified with the Hahn-Banach extension of [ to the space of continuous functions on [0, 27 /d|,
then the support of p must be a subset of the maximum modulus points of f on [0, 27/d[.

Theorem 7.1 (b, c) tells that a trigonometric trinomial attains its maximum modulus at one or two
points modulo 27/d. We have therefore to show that trigonometric binomials and trigonometric
trinomials with only one maximum modulus point modulo 27 /d are not exposed.

— A linear functional that attains its modulus at a trigonometric binomial attains its norm at
a trigonometric monomial because this trigonometric binomial is a convex combination of two
trigonometric monomials with same norm by Equation (H.26).

— If f attains its maximum modulus at a unique point z € [0, 27 /d[, then [ must be a multiple of
the Dirac measure J, at x, so that [ attains also its norm at the monomials in C,4.

These arguments show also that every linear functional on C, attains its norm at monomials or at
trigonometric trinomials with two maximum modulus points.
Sufficiency. Conversely, the trigonometric monomial e'®e} is exposed to the linear form

1 2m

P o /. P(x)e 1 (0F22) g

A trigonometric trinomial 7" that attains its maximum modulus, 1, at two points 27 and 35 modulo
27 /d is exposed, by Lemma 8.1 (a), to any nontrivial convex combination of the unimodular multiples
of Dirac measures T'(z7)d,: and T'(z3)dz; . O

Remark 8.3. This is a complex counterpart to Lemma 2.3 in [84], dealing with the exposed points of
the unit ball of the three-dimensional space spanned by the functions 1, cosx and cos kz in the space
of continuous functions.

Proof of Theorem 1.2 (b). Let K be the unit ball of C4. Straszewicz’s Theorem [97] tells that the
exposed points of K are dense in the set of its extreme points. Let P be a limit point of exposed
points of K. If P is a trigonometric monomial, P is exposed. If P is a trigonometric binomial, P is
not an extreme point of K by Remark 8.2. If P is a trigonometric trinomial, it is the limit point of
trigonometric trinomials that attain their maximum modulus twice modulo 27 /d, so that either P
also attains its maximum modulus twice modulo 27 /d or, by Rolle’s Theorem, P attains its maximum
modulus with multiplicity 4. Let us prove that if a trigonometric trinomial T attains its maximum
modulus with multiplicity 4 at a point z, then T is an extreme point of K. Suppose that T is the
midpoint of two points A and B in K. Then |A(z)| < 1, |B(z)| < 1 and (A(z) + B(z)) /2 = T (), so
that A(z) = B(xz) = T(x). Furthermore

[A(z + )| + |B(z + h)]| h? (A d*|B| 2
T < — 14+ =
T+ h) . (S 1 L)) o)
so that, as |T'(x + h)| = 1 + o(h?),
d?|A| d?|B] . d?]A| d?|B]
P (x) + T2 () = 0 while T2 (x), W(z) <0

and therefore A and B also attain their maximum modulus with multiplicity 4 at . As this implies
that A and B are trigonometric trinomials, Lemma 8.1 (b) yields that T, A and B lie on a parabola:
this implies A= B =T. O
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Remark 8.4. The set of extreme points of the unit ball of C, is not closed: for example, if Ao is
between A; and As, every absolutely convex combination of ey, and ey, is a limit point of exposed
points.

Remark 8.5. If A5 is between \; and Az, and A\; — A\a is not a multiple of A3 — A5 nor vice versa, then
we obtain that every extreme point of the unit ball of C, is exposed.

Remark 8.6. In particular, compare our description of the extreme points of the unit ball of Cy 1 2;
with the characterisation given by K. M. Dyakonov in [27, Theorem 1]. He shows in his Example 1
that it is false that “in order to recognize the extreme points”, “one only needs to know ‘how often’
[the modulus of a trigonometric polynomial] takes the extremal value 1”7. We show that with the

exception of trigonometric binomials, the extreme points of the unit ball of Cyq 1 2y are characterised
by the number of zeroes of 1 — |P|*.

Remark 8.7. This is a complex counterpart to [59], dealing with the extreme points of the unit ball
of the three-dimensional space spanned by the functions 1, 2™ and z™ in the space of real valued
continuous functions on [—1, 1].

9 Dependence of the maximum modulus on the arguments

We wish to study how the maximum modulus of a trigonometric trinomial depends on the phase of its
coefficients. We shall use the following formula that gives an expression for the directional derivative
of a maximum function. It was established in [23]. Elementary properties of maximum functions are
addressed in [81, Part Two, Problems 223-226].

N. G. Chebotarév’s formula ([26, Theorem VI.3.2, (3.6)]). Let I C R be an open interval and let

3]
K be a compact space. Let f(t,x) be a function on I x K that is continuous along with a—‘:(t, x). Let

fr(t) = max f(¢, x).

reK
Then f*(t) admits the following expansion at every t € I:
of
Bl
ot

Proposition 9.1. Let k and l be positive coprime integers. Let r1, ro and r3 be three positive real
numbers. Then

Frt+h) = (1) + f(tér)li?*(t)( (t, x)) +o(h). (H.27)

max|rie 75 4 rpelt 4 rzel|
x
is an even 2w /(k + l)-periodic function of t that decreases strictly on [0,7/(k +1)]: in particular
mtinmax’rle*ikx +roelt + rgeilxy = max’rle*”” + roei™/ (kD rgeilz‘.
x x

Proof. Let

| (H.28)

ft,z) = |Tle_”” + ryelt 4 rgell®

By (H.10) and (H.11), f* is an even 27/ (k + [)-periodic function.

Let t € ]0,7/(k + 1)[ and choose x* such that f(¢,2*) = f*(t): then a* € [—t/k,t/l] by Proposi-
tion 5.1, so that

10
%a—{(t, x¥) = —rysin(t + kx*) — r3sin(t — lz*) < 0
because t + kx* € [0, (k + 1)t/l] and t — lz* € [0, (k + )t/k] do not vanish simultaneously. By
Formula (H.27), f* decreases strictly on [0, 7/(k +1)]. O

Proposition 9.2. Let k and l be positive coprime integers. Let r1, ro and r3 be three positive real
numbers. Then ] ] )
maxz‘rle*"” + roell + Tgellz‘
‘rl + roelt + r3|

is an increasing function of t € [0,7/(k +1)]. If kry = lrs, it is constantly equal to 1; otherwise it is
strictly increasing.

(H.29)
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Proof. Let f(t,z) be as in (H.28): then the expression (H.29) is g*(¢)'/? with
f(t,x)
f(t,0)

If krq = lrs, then f(¢,0) = f*(¢), so that ¢g*(¢) = 1. As shown in the beginning of Section 6, we
may suppose without loss of generality that kry < Irs. Let t € ]0,7/(k +1)[ and choose z* such that
f(t,z*) = f*(t): then z* €]0,¢/l] by Propositions 5.1 and 6.1 and

29 o 0
HEO 9y« g (Dt ns.0) - 0.0 0.0)

g(t,l‘) =

ot
= (—rysin(t + ka*) — rysin(t — 1z*)) f(£,0) + f*(t)(r1 + r3)sint
= h(0)f*(t) = h(z) f(t,0)
with
h(xz) = rysin(t + kx) + rgsin(t — lz).
Let us show that h is strictly decreasing on [0,¢/l]: in fact, if € ]0,t/I],

%(z) = kry cos(t + kx) — lrgcos(t — lz) < (kry — lrs) cos(t — lx) < 0.

x

As f*(t) > f(t,0) and h(0) > h(z*), (0g/0t)(t,z*) > 0. By N. G. Chebotarév’s formula, g* increases
strictly on [0, 7/(k + 1)]. O

It is possible to describe the decrease of the maximum modulus of a trigonometric trinomial
independently of the r’s as follows.

Proposition 9.3. Let k and | be two positive coprime integers. Let r1, ro and rs be three positive
real numbers. Let 0 <t <t < w/(k+1). Then

cos(t'/2)
cos(t/2)

—ikx

max|rle*”” + Tgeit/ + Tge”z} < max}rle + el 4 Tge”z} (H.30)
xT xT

with equality if and only if ry :ro :r3=1:k+1:k.
Proof. Let us apply Proposition 9.2. We have

oy 2
|1+ roelt + g _1 2ro(r1 + 73)(cost’ — cost)

|71+ roeit + 1 (r1+73)% + 2r2(r1 + 13) cost + 13

1+ cost’ — cost
cost + (r3 + (r1 +13)?)/2ra(r1 + r3)
cost’ —cost cost' +1

<1 =
Si+ cost+1 cost +1

by the arithmetic-geometric inequality, with equality if and only if ro = r; 4+ r3. Therefore Inequa-
lity (H.30) holds, with equality if and only if kry = lrsg and 7o =11 + 73. O

We may now find the minimum of the maximum modulus of a trigonometric trinomial with given
spectrum, Fourier coefficient arguments and moduli sum. Proposition 9.3 yields with ¢ = 0

Corollary 9.4. Let k and l be two positive coprime integers. Let r1, ro and r3 be three positive real
numbers. Let t € |0,7/(k +1)]. Then

maxz’rle_‘kl + roelt + rge‘l””’

> cos(t/2
rr+7ro+17s (/)

with equality if and only if ry :ro:rs=1:k+1:k.
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Remark 9.5. There is a shortcut proof to Corollary 9.4:

max,|r e "* 4 ryelt 4 Tgeilz‘ N ‘7’1 + roelt 4 Tg‘

Ty Tt
4
=i Anrakre g )
(7’1 + T2 + Tg)

> /1 —sin?(t/2) = cos(t/2)

and equality holds if and only if |rle’i’” + roelt + rgeilx| is maximal for x = 0 and r{ 4+ r3 = 79.

10 The norm of unimodular relative Fourier multipliers

We may now compute the norm of unimodular relative Fourier multipliers.

Corollary 10.1. Let k and l be two positive coprime integers. Let t € [0,7w/(k +1)]. Let M be the
relative Fourier multiplier (0,¢,0) that maps the element

rie®e_j 4 roei¥2eg + r3eiey (H.31)
of the normed space Cy_y 0,1y on
rre®e g +roelttuley 4 poeltsg,.

Then M has norm cos(m/2(k +1) —t/2) / cos(m/2(k + 1)) and attains its norm ezactly at elements
of form (H.31) withry :re:rg=1:k+1:k and

—lu; + (k+ Dug — kus =7  mod 27.
Proof. This follows from Proposition 9.3 and the concavity of cos on [0, 7/2]. O

Remark 10.2. This corollary enables us to guess how to lift M to an operator that acts by convolution
with a measure . Note that p is a Hahn-Banach extension of the linear form f — M f(0). The
relative multiplier M is an isometry if and only if ¢ = 0 and pu is the Dirac measure in 0. Otherwise,
t # 0; the proof of Theorem 1.2 (a) in Section 8 shows that p is a linear combination ady, + 5d,, of
two Dirac measures such that the norm of M is |a| + |8]. Let f(z) = le 7 4 (k4 1)e!™/ (kD 4 keile:
M attains its norm at f, f attains its maximum modulus at 0 and 2mn/(k 4+ 1), and M f attains its
maximum modulus at 2mn/(k 4 1), where m is the inverse of [ modulo k + . As

(I +181) max | f ()| = max|M f ()

= lix £ (2 /(s + 1)
=laf(2mn/(k+1) —y) + Bf(2mn/(k+1) — w)],

we must choose {y,w} ={0,2mn/(k+1)}. A computation yields then

— oit/2 sin(r/(k +1) —1/2) S it/ 2/ () SI(E/2)
a sin(r/(k 1) O sin(r/(k +1))

Oomr ) (k+1)-

If k =1 =1, this is a special case of the formula appearing in [41, proof of Prop. 1]. Consult [95] on
this issue.

11 The Sidon constant of integer sets

Let us study the maximum modulus of a trigonometric trinomial with given spectrum and Fourier
coefficient moduli sum. We get the following result as an immediate consequence of Corollary 9.4.
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Proposition 11.1. Let k and [ be two positive coprime integers. Let r1, ro and r3 be three positive
real numbers. Let t € [0,7/(k +1)]. Then

max|rle_ikl + el 4 rgeill| > cos(m/2(k 4+ 1)) - (r1 + 712 +13)
x

with equality if and only if r1 :ro :rs=1:k+1:k andt =7n/(k+1).
This means that the Sidon constant of {—k,0,} equals sec(w/2(k +1)).
The Sidon constant of integer sets was previously known only in the following three instances:
— The equality
max|rlei(t1+)‘1x) + rgei(tﬁ)‘”)‘ =71+ 1
xr

shows that the Sidon constant of sets with one or two elements is 1.

— The Sidon constant of {—1,0,1} is v/2 and it is attained for e_; + 2i + e;. Let us give the

original argument: if f(z) = ’rle’ix + roelt + rzel® 2, the parallelogram identity and the
arithmetic-quadratic inequality yield
max f(x) > max @)+ flw+7)
x x 2
—iz iz it |2 —iz iz it|2
’rle +rze” +roe ’ —l—’rle +rze” —rge
= max 5
xr

i 12 12
:max’rle ‘I—i—rge‘z‘ —i—‘rge‘t’
T

(T1 + ) + T3)2

=(ri+r3)+7ri> 5

— The Sidon constant of {0, 1,2, 3,4} is 2 and it is attained for 1+ 2e; + 2e3 — 2e3 + ey.

These results were obtained by D. J. Newman (see [94].) The fact that the Sidon constant of sets of
three integers cannot be 1 had been noted with pairwise different proofs in [94, 21, 50].

Remark 11.2. The real algebraic counterpart is better understood: the maximal absolute value of a
real algebraic polynomial of degree at most n with given coefficient absolute value sum is minimal
for multiples of the nth Chebyshev polynomial T, (look up the last paragraph of [28], and [82,
Theorem 16.3.3] for a proof). As the sum of the absolute values of T;,’s coeflicients is the integer ¢,
nearest to (1 + \/5)”/2, we have for real ag,a1,...,a,

max [ao a1z o+ aa”| > 67 (ool + a4+ )
The following estimates for the Sidon constant of large integer sets are known.
— E. Beller and D. J. Newman [8] showed that the Sidon constant of {0,1,...,n} is equivalent to

N

— (Hadamard sets.) Let ¢ > 1 and suppose that the sequence (\;);>1 grows with geometric ratio
g |Aj+1] = g|Aj| for every j. Then the Sidon constant of {Ai, Ao, ...} is finite; it is at most
4.27 if ¢ > 2 (see [46]), at most 2 if ¢ > 3 (see [54]), and at most 1 + 72/ (2¢® — 2 — 7?) if
q > /14 72/2 (see [63, Corollary 9.4] or the updated [64, Corollary 10.2.1].)

Our computations show that the last estimate of the Sidon constant has the right order in ¢~
for geometric progressions.

1

Proposition 11.3. Let C be the Sidon constant of the geometric progression {1,q,q>,...}, where
q = 3 is an integer. Then

1+7%/8(q+1)* <sec(r/2(q+1)) <C <147/ (2¢° =2 — 7).

One initial motivation for this work was to decide whether there are sets {\;};>1 with |A\j41] >
q|\;| whose Sidon constant is arbitrarily close to 1 and to find evidence among sets with three elements.
That there are such sets, arbitrarily large albeit finite, may in fact be proved by the method of Riesz
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products in [47, Appendix V, §1.11]; see also [64, Proposition 13.1.3]. The case of infinite sets remains
open.

A second motivation was to show that the real and complex unconditional constants of the basis
(e, €xy, €x5) Of Cy are different; we prove however that they coincide, and it remains an open ques-
tion whether they may be different for larger sets. The real unconditional constant of (ex,, €x,, €xs)
is the maximum of the norm of the eight unimodular relative Fourier multipliers (¢1, t2, t3) such that
ty = 0 modulo 7. Let 4,7,k be a permutation of 1,2,3 such that the power of 2 in \; — A\x and in
Aj — A are equal. Lemma 2.1 shows that the four relative multipliers satisfying ¢; = t; modulo 27
are isometries and that the norm of any of the four others, satisfying ¢; # t; modulo 2w, gives the
real unconditional constant. In general, the complex unconditional constant is bounded by 7/2 times
the real unconditional constant, as proved in [93]; in our case, they are equal.

Corollary 11.4. The complex unconditional constant of the basis (ex,, €x,,exs) of Ca is equal to
its real unconditional constant.
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On the Sidon constant of {0, 1,2, 3}

Abstract

We study an elementary extremal problem on trigonometric polynomials of degree 3. We discover
a distinguished torus of extremal functions.

1 Introduction

Let A ={ )Xo, A1,..., A\n—1} be a set of n frequencies. We study the following extremal problem:

Given n positive intensities og, 01,...,0n—1, to find n phases ¥g,?1,...,9,-1 such that the
maximum max; | Y g;e!% e'*i?| is minimal.

()

This should help us to study the following extremal problem:

To find n complex coefficients ¢, 1, . . ., ¢p—1 with given moduli sum |eg| +]e1|+- -+ |ep—1| =1
such that the maximum max; | Y ¢;je'*?| is minimal.

(1)

Note that this maximum’s inverse is the Sidon constant S(A). D. J. Newman (see [94, Chapter 3])
obtained the following upper bound for S({0,1,...,n}): by Parseval’s theorem on ¢2({1, e?7/" .

e2iln=Dm/n1y butting Y ¢jelit = f(2),

max| (1)

ey

max | f()* V |f(t+2m/n)* V- V| (t+2(n — D)m/n)?
max (|f(0)] + [ f(t +2x/n)* + - + [f(t + 2(n — m/n)|*) /n

WV

max lco 4+ cne™|? + |er]® 4 + |ens1]?
2
= (leol + lenl)™ + le1* + leal® + - + len—1]? (L1)
2
> (leol + ler 4+ leal) ™ /n,

and H. S. Shapiro showed (ibid.) that equality can hold exactly if n € {1,2,4}. If n = 2, equality
holds exactly for multiples and translates of f(t) = 1 + 2iel’ + e!?!. If n = 3, the functions

i2v/2cosT —1—3sinT + 3+sinTeit " 3*SinTei2t " i2v/2cosT — 1 +381n7'ei3t
15 10 10 15

have their modulus bounded by 3/5 for each 7, so that 5/3 < S({0,1,2,3}) < /3.

The motivation is that we wish to know whether the real and complex unconditionality constants
are distinct for basic sequences of characters e'™.

Notation. T={z€C:|z|] =1} and ex(z) = 2* for z € T and \ € Z.

117
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2 Necessary conditions for solutions to Extremal problem (f)

Let us the state the theorem of Chebotarev (see [26, Th. VI.3.2, (3.6)]) in our context.

Theorem 2.1. Let ®: R¥ x R — R be a continuous function that is C' in the first variable and
periodic in the second variable. If ®*: x — max, ®(z,y) achieves its minimum at x*, then there are
T POINts Y1,...,Yr such that 1 <r <k+1 and ®(z*,y1) =--- = ®(a*,y,.) = ®*(a*), and

0P
ap,...,Q S Za 8x($ Yi)

Let us apply this theorem to our problem. For n pairwise distinct integers Ao, A1,..., An—1, N
positive real numbers gg, 01, .., 0n—1 and arguments ¢ and ¥ = (Jg, V1, ..., %,—1) let

ai(Xt+9;) .
f(t,0,0) = Zggez—g = R(t, 0,9)e'®2?) with R(t, 0,9) > 0 and & = R2.
J

Define
D" (p,0) = max ®(t, 0,9), ®; = min d*
and, for fixed p; > 0,
Dy (t,9) = @(t,0,9), Opy(t,9) = O(t,0,9), Py(0) = ®*(0,9), (®,)« = min P,
Note that ®* is continuous (see [81, Chapter 5.4]). Then
222 pipk cos((Ag — Aj)t + 0k — ;)

b =

(> 0)?
90 22N — Awejorsin((Ak — At 0k —05) _ o 7or
ot o) ot
0P Yoojsin(( A — At +0p —V5)  —20 A\
95 9 S( FeliPwt+dr) 1.2
D o (X 05)? o i : (2
Note that our problem depends in fact on n — 2 phases only; we have
0d 0%
L.
Z 819k 2 Mg, ad, ot (1.3)

We get thus

Lemma 2.2. Let ®} achieve its minimum at ¥ and M = {t: ®,(t,9) = (®}) }.
(a) If M is a singleton {t}, then (t,9) is a critical point of ®,. Then all At + Yy are congruent to
©,(t,9) modulo .
(b) If M is a pair {t,u} and (t,9), (u, ) are not critical points of ®,, then

0P 0P
Jp,v>0VEk ua—ﬂk(t,ﬂ) +V3—19k

Then psin(O,(t,9) — At — Yg) + vsin(©,(u, ¥) — Agu — 9%) =0 for all k.

(u,9) =0

Furthermore one may compute

9® _ 2 eicos((Me — At + 9k —9;) 28 2 (R(Fe/ ALy ).
dor, (3= 0))? 205 2.0
Note that our problem depends on n — 1 intensities only; we have
0P
— =0.
Z Ok dor

Thus
Zgja_q) ZQJ oo _ R(ei()\kt+19k—®) _ R)
2 o 2Qk 0y,
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Lemma 2.3. Let ®* achieve its minimum at (0,9) and M = {t: ®(t,0,9) = D% }.
(a) If M is a singleton {t}, then (t, 0,v) is a critical point of ®. Then &= =1.
(b) If M is a pair {t,u} and % # 1, then

o® 00 o0 09

3M5V>OVk M(a—ﬁkaa—gk)(ugaﬂ)—’—y(a—ﬂkaa—gk)(uagaﬂ):0 (14)

If in twrn ®% # 1 and (1.4) holds, then there is an o and there are signs €; € {—1,1} not all
equal such that, with dijr = ged(Ar — Xis Aj — Ai) and 855, € {0,1}
R(t, 0,9) = R(u, 0,9) = cos
Y.ci0i =) €Xioi =0
Vi, g, k (()\J —)\k)&'i-‘r()\k —)\i)f:‘j +()\z —)\j)Ek)OzE
()\j — Ak)ﬂz + (>\k — )\1)19] + ()\Z — )\j)ﬁk = 5ijkdijk7r mod Qdijkﬁ
V] @(t, o, 19) — )\jt — 19]' = EjOé = 7(@(’[1,, o, 19) — )\ju — 19])

Proof. Let R =R(t, 0,9) = R(u, 0,9), ©r = O(t, 0,9), ©,, = O(u, 0,9). Then
Vk‘ ,U/(ei(Akt‘Fﬁki@t) _ R) + l/(ei()\ku+ﬂk7®u) _ R) — 0
Let us suppose i + v = 1. By taking moduli, we get then

R2 4 2 — 12
2uR

R2 2 2
, cos(A\pu+ 9 — 0,) = %;

VEk cos(Apt+ 9V —0Oy) =
Returning to the definition of f, we have then
VE cos(Apt + Y — Oy) =R = cos(A\pu + 9, — Oy),
so that furthermore g = v. Thus we may choose signs e, € {—1, 1} such that

Vi k ejsin(Ajt +19; — Oy) = e sin(Agt + Vg — Oy) = —gpsin(Ayu + 9, — 0,,).

These sines do not vanish, because otherwise R = 1. The expressions of f and 9®/9¢ yield therefore

ZE]‘Q]‘ = O, ZE]‘)\J‘Q]‘ =0.

We can therefore choose a, &’ and signs ¢; € {—1, 1} such that

V] @t*)\jtfﬁj:t?ja , @uf)\jufﬁj:é:jo/.

0 ife; = ¢
A — \j)E+ 0, — 95 = ’
(Ae = Aj) k=Y {QEja otherwise.

and similarly for u. Finally

VRS VD YR VD i PV VD VRS VS Vi
¥ + ¥ + Yy = i( i £; € )a. O
dijk dijr 7 dijk y dijk dijr. dijk i

3 Necessary conditions for solutions to Extremal problem (1)

Let (o,7) solve the extremal problem. If the point ¢ such that ®*(o,d) = ®(¢, p,9) were unique,
then ®*(p,9) = 1. If there are exactly two points ¢, u such that ®*(p,9) = ®(¢,0,9) = ®(u, 0, 9),
then either ®*(p,1) = 1 or there is an « and there are signs eg,e1,e2 € {—1,1} such that, with
d= ng(Al — )\07 )\2 — )\0),

R(t, 0,9) = R(u, 0,9) = cos
€000 + €101 + €202 = €0Ao00 + €1A101 + 2202 =0
(()\1 — )\2)50 + ()\2 — )\0)61 + ()\0 — )\1)52)0[ =
()\1 — )\2)190 + ()\2 — )\0)191 + ()\0 — )\1)192 =dr mod 2dw



120 I. ON THE SIDON CONSTANT OF {0, 1,2, 3}

We need not consider the case (A1 — A2)¥o + (A2 — Ao)1 + (Ao — A1)¥2 =0 mod 2dr, for which the
system
Aot + 99 = Mt + 91 = Mot + 92

has a solution, so that ®*(p,¥) = 1. Then
g0 = sgn(A; — Aa2)e, €1 =sgn(Az — Ao)e, €2 =sgn(Ag — Ar)e for some € € {—1,1},

so that
00 = |>\1 — )\2|O’, 01 = |)\2 — )\0|O’, 02 = |)\0 — )\1|O’ for some o > 0.
Choose {i,7,k} = {0,1,2} such that ¢; # ¢; = e;. Then 2|A\; — M\g|la = dr mod 2dn, so that
R < cos(dm/2|Aj — Ag|). Further g + ¢; = 0;, and the system
)\jt+19j :)\kt—f'?gk :)\it+19i_d7T/()\j _)\k)

has a solution ¢, for which

B |Qk +0; _i_gieidﬂ'/(kj—/\k)l _ dr

R = CoOS ————.
20 2|\ — Akl

This solves the problem for A = {0,1,2}, as t — ®(¢, 9,J) has at most two maxima.

4 The case {0,1,2,3}: a distinguished family of polynomials

Let A = {0,1,2,3}. Let (p,v) solve the extremal problem. If the point ¢ such that ®*(p,9) =
®(t, 0,9) were unique, then ®* = 1. If there were exactly two points ¢,u such that ®*(p,9) =
®(t, 0,9) = ®(u,0,9), then ®* = /2. There are therefore exactly three points ¢,u,t” such that
D*(0,9) = O(t, 0,9) = P(u, 0,9%) = (¢, 0,9).

Let f(t,7) be given by

i2v/2cosT —1—3sinT + 3+sinTeit " 3*SinTeizt " i2v/2cosT — 1 +3sinTei3t.
15 10 10 15

One computes that the moduli sum of the coefficients is 1, independently of 7. Note that f(t,—7) =

eBtf(—t,7) and f(t,7 + ) = e f(t,7), so that we shall restrict the parameter 7 to [0,7/2]. Let
O(t,7) = |f(t,7)]>. We get

2y/2sin2 247 — 13 cos?2
o(t,7) = %(sint —sin2t 4+ 2sin3t) + %
t 2t 1417 2
+ (1 + cos27) (C;; - C0285 ) + 22205 T cos3t.

Let us put

2s8in 2t int 17sin3t 242
s;r; - % - ,S;; ;g_(cos t — 2 cos 2t + 6 cos 3t)
M =
2ﬁ(sint—sin2t+2sin3t) ﬁ_cost_i_cos%_ 17 cos 3t
75 900 20 25 225

The critical points (¢,7) of ® satisfy

cos 2T sint  2sin2t " sin 3t
M (sin2¢) - ( 20 2(5) 75 )

We have

1 1
det M = 5750 sint(cost - Z) (4cost —11)(16 cos®t — 72 cos® t + 33 cost — 41),
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which vanishes exactly if cost € {—1,1/4,1}. Otherwise we get

272 cos®t — 72 cos?t — 159 cost + 23
cos2T1 = — =C(t)
16 cos3t — T2 cos?t + 33 cost — 41 (L5)
o 24+/2sint(4 cost + 1)(2cost — 1) S() ’
sin2r = — _
16 cos®t — 72 cos?t + 33 cost — 41

Note that this solution is consistent, as C?+S2 = 1. For such 7, ®(t,7) = 9/25. Checking the special
cases cost € {—1,1/4,1} yields that all local maxima are given by the above formulas, that ® attains
its global minimum, 0, exactly for 7 = 0 and ¢ = w, and has exactly one other local minimum, of
value 49/225, for 7 = /2 and t = 0. There is exactly one other critical point, of value 5/18, that is
a saddle point, given by 7 = arccos(17/37)/2, t = arccos1/4.

As C(0) = 1, C(£n/3) = =1, C(xarccos(—1/4)) = 1, C(w) = —1, the intermediate values
theorem shows that for a given 7, there are exactly three solutions ¢ to system (1.5), for which ®(t, 1)
achieves then its global maximum, 9/25.

These formulas yield in turn that for a sign e € {—1,+1}

cosT = 8¢(2cost — 1) cost/2 _ o)
V=16 cos3t + T2 cos?t — 33 cost + 41 (1.6)
3v/2e(4cost + 1)sint/2 ’

sint = = S.(t
V—16cos3t + T2 cos?t — 33 cost + 41 =)

5 The real unconditional constant of {0, 1,2, 3}

If L is a subspace of the space of complex continuous functions on a compact space T with n dimen-
sions, then every functional [ on L extends isometrically to a linear combination of at most 2n Dirac
measures: there are m < 2n points t; € T and coefficients by, € C such that for every f € L one has
()= bef(tr) and ||I]| = >_ |bk| (see [13, Exercice 6.8].) This implies in particular that there is a
function f € L whose maximum modulus points contain the tj.

Let us now specialise to the case L = Cx(T) with A a finite set. Note that a function in L has at
most max A — min A maximum modulus points; a trigonometric trinomial has at most 2 maximum
modulus points up to periodicity.

Let us make the ad hoc hypothesis that the ¢; are the nth roots of unity, whose set forms the group
U,,: this obliges us to restrict our study to those functionals [ such that (e;) = i(ej ) if j = 7/ mod n.
Then the condition I(f) =Y by f(tx) reads

n—1
l(ej) = Zbkeink”/" for j € A,
k=0

which may be interpreted as telling that the (e;) are the Fourier coefficients of the measure p on U,

given by
n—1
n = Z bk(semlmr/n
k=0

(where the Dirac measures act on U,). A solution to these equations is given by

by — 1 nil o —i2jkm/n l(ejr) if thereis j' = jmodn in A
n 0 otherwise.

=0

The norm of x4 is bounded by
n—1
> Jbx]
k=0

and is attained at u € C(U,,) if and only if u(ei2*™/™)by = |by| for every k, up to a nonzero complex
number. This yields an upper bound for the norm of [ that becomes an equality if there is an f € C(T)
of norm 1 such that f(e!2#7™/m) = y(ei2k7/m),

Here are two applications.
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Proposition 5.1. Let A be a finite subset of Z. The Sidon constant of A is at most (# A — 1)'/2.

Proof. One may suppose that min A = 0 and choose n = max A. Let [ be a linear functional [ with
coefficients I(e;) of modulus 1: one may suppose that I(eg) = [(ey). Then

n—1
1 N —i2jkm/n
M<ES] S tepe
k=0"jeA\{n}

o\ 1/2
T .
jeM{n}

(3 wesr) = 0

JeM\{n}

1n71
< (52

k=0

Remark 5.2. Hervé Queffélec showed me a more elementary proof of the same fact, that follows the
line of D. J. Newman’s computation in the introduction: if f € C5(T), then there are only # A — 1
squares, and not n, in Inequality (I.1)!

Remark 5.3. If A = {0,1,...,n}, then Inequality (I.7) is an equality if and only if (l(ej))?;ol is a
biunimodular sequence, that is a unimodular function on U,, whose Fourier transform is also unimo-
dular. In other words, the matrix H = (I(ej—k))ogj,k<n—1 i a circulant complex Hadamard matriz,
where the indices 7 — k are computed modulo n: it satisfies H*H = nld. Such matrices always exist:

see [10].
Proposition 5.4. Let A = {0,1,2,3}. The real unconditional constant of Cx(T) is 5/3.

Proof. The polynomials in the previous section show that the real unconditional constant of Cx(T) is
at least 5/3. This constant is the maximum of the norm of linear functionals [ with I(e;) € {—1,1}.
As [ has the same norm as [: f — I(f(- 4 7)), for which I(e;) = (—1)’I(e;), one may suppose that
I(eg) = l(e3). Let us now try to lift I to a sum of Dirac measures on the third roots of unity. Such a
lifting is either the Dirac measure at 0 or

i(l(ej))0<j<2 € {(71a 1, 1)a (17 -1, 1)a (17 L 71)}

and these six cases yield the same norm

1 . . . .
§(|_1+1+1|+|_1+612ﬂ‘/3+el47\'/3|+|_1+el47l'/3+61271'/3|):5/3. n

6 Trigonometric polynomials of degree 3 with real coefficients

Suppose cg, 1, C2, c3 are real and cocg # 0. Let g; = sgn ¢; be their sign. Then

HCO —+ cleit —+ 0262” —+ Cgegit”m = |CO —+ C2| —+ |Cl —+ Cg|
if
€0 = €9 and €1 = €3
o { 5053(0001 + ci1c9 + coc3 + 90003) + 4(0002 + 0103) >0
6|C()63| g |COC2 + 0103|
or epes(coer + cr1ca + cacs + 9coes) < 4(coca + crc3)
or ¢&gp&1€283 = —1 and (|COC2| + |01C3|)2 < 4(|Co| + |Cg|)0003(€001 + 5302).

2it 4 cze is equal to

c1 c2 \?3 c1 co \2 Co ‘ v
26003<(3—%+3—%) +((3—%—3—%) +(1—3—%)(1—3—%)) )

C1C2 c1C2 2
* (1 a 30003)(03 e5) - (1 * 30003)(0002 Fecs) + g(C% +ca).

Otherwise ||co + c1e'’ + coe [




6. TRIGONOMETRIC POLYNOMIALS OF DEGREE 3 WITH REAL COEFFICIENTS

Suppose c¢g, c1, 2 are real and coca # 0. Let &; = sgn¢; be their sign. Then
HCO —+ cleit —+ Cge2it||oo = |CO —+ C2| —+ |Cl| lf Ep = €2 Or |Cl| |Cal + C§1| 2 4,

otherwise
llco + cre' + coe? |2, = (co — c2)?(1 — cF/4coco).
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