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Abstra
t

We inspe
t the relationship between relative Fourier multipliers on non
ommutative

Lebesgue-Orli
z spa
es of a dis
rete group Γ and relative Toeplitz-S
hur multipliers

on S
hatten-von-Neumann-Orli
z 
lasses. Four appli
ations are given: la
unary sets,

un
onditional S
hauder bases for the subspa
e of a Lebesgue spa
e determined by a

given spe
trum Λ ⊆ Γ , the norm of the Hilbert transform and the Riesz proje
tion on

S
hatten-von-Neumann 
lasses with exponent a power of 2, and the norm of Toeplitz

S
hur multipliers on S
hatten-von-Neumann 
lasses with exponent less than 1.

1 Introdu
tion

Let Λ be a subset of Z and let x be a bounded measurable fun
tion on the 
ir
le T with

Fourier spe
trum in Λ: we write x ∈ L∞
Λ , x ∼ ∑

k∈Λ xkz
k
. The matrix of the asso
iated

operator y 7→ xy on L2
with respe
t to its trigonometri
 basis is the Toeplitz matrix

(xr−c)(r,c)∈Z×Z =





















··· 1 0 −1 ···

...
. . .

. . .
. . .

. . .
. . .

1
. . . x0 x1 x2

. . .

0
. . . x−1 x0 x1

. . .

−1
. . . x−2 x−1 x0

. . .

...
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










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with support in Λ̋ = {(r, c) : r − c ∈ Λ}.
This is a point of departure for the interplay of harmoni
 analysis and operator theory.

In the general 
ase of a dis
rete group Γ , the 
ounterpart to a bounded measurable fun
tion

is de�ned as a bounded operator on ℓ2Γ whose matrix has the form (xrc−1)(r,c)∈Γ×Γ for

some sequen
e (xγ)γ∈Γ . This will be the framework of the body of this arti
le, while the

introdu
tion sti
ks to the 
ase Γ = Z.

We are 
on
erned with two kinds of multipliers. A sequen
e ϕ = (ϕk)k∈Λ de�nes

• the relative Fourier multipli
ation operator on trigonometri
 polynomials with spe
-

trum in Λ by

∑

k∈Λ

xkz
k 7→

∑

k∈Λ

ϕkxkz
k; (1.1)

• the relative S
hur multipli
ation operator on �nite matri
es with support in Λ̋ by

(xr,c)(r,c)∈Z×Z 7→ (ϕ̋r,cxr,c)(r,c)∈Z×Z, (1.2)

where ϕ̋r,c = ϕr−c.
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Marek Bo»ejko and Gero Fendler proved that these two multipliers have the same norm.

The operator (1.1) is nothing but the restri
tion of (1.2) to Toeplitz matri
es. They noted

that it is automati
ally 
ompletely bounded: it has the same norm when a
ting on trigono-

metri
 series with operator 
oe�
ients xk, and this permits to remove this restri
tion. S
hur

multipli
ation is also automati
ally 
ompletely bounded.

A part of this observation has been extended by Gilles Pisier to multipliers a
ting on a

translation invariant Lebesgue spa
e LpΛ and on the subspa
e Sp
Λ̋
of elements of a S
hatten-

von-Neumann 
lass supported by Λ̋, respe
tively; it yields that the 
omplete norm of a

relative S
hur multiplier (1.2) remains bounded by the 
omplete norm of the relative Fourier

multiplier (1.1).

But LpΛ is not a subspa
e of Sp
Λ̋
, so a relative Fourier multiplier may not be viewed

anymore as the restri
tion of a relative S
hur multiplier to Toeplitz matri
es. We point out

that this di�
ulty may be over
ome by using Szeg®'s limit theorem: a bounded measurable

real fun
tion on T is the weak

∗
limit of the normalised 
ounting measure of eigenvalues of

�nite trun
ates of its Toeplitz matrix. This method also applies to Orli
z norms.

Theorem 1.1. Let ψ : R+ → R+
be a 
ontinuous nonde
reasing fun
tion vanishing only

at 0. The norm of the relative Fourier multipli
ation operator (1.1) on the Lebesgue-Orli
z

spa
e LψΛ is bounded by the norm of the relative S
hur multipli
ation operator (1.2) on the

S
hatten-von-Neumann-Orli
z 
lass Sψ
Λ̋
.

In order to deal with 
omplete norms, we dedu
e a blo
k matrix variant of Szeg®'s

limit theorem in the style of Erik Bédos ([2℄), Theorem 2.6. Note that other types of

approximation are also available, as the 
ompletely positive approximation property and

Reiter sequen
es 
ombined with 
omplex interpolation. They are studied in Se
tion 3 in

terms of lo
al embeddings of Lp into Sp. They are more 
anoni
al than Szeg®'s limit theorem,

but give no a

ess to Orli
z norms.

Theorem 1.2. Let ψ : R+ → R+
be a 
ontinuous nonde
reasing fun
tion vanishing only

at 0. The norm of the following operators is equal:

• the relative Fourier multipli
ation operator (1.1) on the Lebesgue-Orli
z spa
e LψΛ(S
ψ)

of Sψ-valued trigonometri
 series with spe
trum in Λ;

• the relative S
hur multipli
ation operator (1.2) on the S
hatten-von-Neumann-Orli
z


lass Sψ
Λ̋
(Sψ) of Sψ-valued matri
es with support in Λ̋.

See Theorems 2.1 and 2.7 for the pre
ise statement in the general 
ase of an amenable

group Γ .
An appli
ation of this theorem to the 
lass of all unimodular Fourier multipliers yields

a transfer of la
unary subsets into la
unary matrix patterns. Call Λ un
onditional in Lp

if (zk)k∈Λ is an un
onditional basis of LpΛ, and 
all Λ̋ un
onditional in Sp if the sequen
e

(eq)q∈Λ̋ of elementary matri
es is an un
onditional basis of Sp
Λ̋
. These properties are also

known as Λ(p) if p > 2 (Λ(2) if p < 2) and σ(p), respe
tively; they have natural �
omplete�


ounterparts that are also known as Λ(p)cb if p > 2 (K(p)cb if p 6 2) and σ(p)cb, respe
tively.
(See De�nitions 4.1 and 4.2).

Corollary 1.3. Let 1 6 p <∞. If Λ̋ is un
onditional in Sp, then Λ is un
onditional in Lp.
Λ̋ is 
ompletely un
onditional in Sp if and only if Λ is 
ompletely un
onditional in Lp.

See Proposition 4.3 for the pre
ise statement in the general 
ase of a dis
rete group Γ .
The two most prominent multipliers are the Riesz proje
tion and the Hilbert transform.

The �rst 
onsists in letting ϕ be the indi
ator fun
tion of nonnegative integers and transfers

into the upper triangular trun
ation of matri
es. The se
ond 
orresponds to the sign fun
tion

and transfers into the Hilbert matrix transform. We obtain the following partial results.

2



Theorem 1.4. The norm of the matrix Riesz proje
tion and of the matrix Hilbert transform

on Sψ(Sψ) 
oin
ide with their norm on Sψ.

• If p is a power of 2, then the norm of the matrix Hilbert transform on Sp is cot(π/2p).

• The norm of the matrix Riesz proje
tion on S4 is

√
2.

The transfer te
hnique lends itself naturally to the 
ase where Λ 
ontains a sumset

R + C: if subsets R′
and C′

are extra
ted so that the r + c with r ∈ R′
and c ∈ C′

are

pairwise distin
t, they may play the role of rows and 
olumns. Here are the 
onsequen
es

of the 
onditionality of the sequen
e of elementary matri
es er,c in Sp for p 6= 2 and of the

unboundedness of the Riesz transform on S1 and S∞, respe
tively.

Theorem 1.5. If (zk)k∈Λ is a 
ompletely un
onditional basis of LpΛ with p 6= 2, then Λ
does not 
ontain sumsets R+ C of arbitrarily large sets. If either

• the spa
e L1
Λ admits some 
ompletely un
onditional approximating sequen
e, or

• the spa
e CΛ of 
ontinuous fun
tions with spe
trum in Λ admits some un
onditional

approximating sequen
e,

then Λ does not 
ontain the sumset R+ C of two in�nite sets.

The proof of the se
ond part of this theorem 
onsists in 
onstru
ting in�nite subsets

R′
and C′

and skipped blo
k sums

∑

(Tkj+1
− Tkj ) of a given approximating sequen
e that

a
t like the proje
tion on the �upper triangular� part of R′ + C′
. See Proposition 4.8 and

Theorem 7.4 for the pre
ise statement in the general 
ase of a dis
rete group Γ .
In the 
ase of quasi-normed S
hatten-von-Neumann 
lasses Sp with p < 1, the transfer

te
hnique yields a new proof for the following result of Alexey Alexandrov and Vladimir

Peller.

Theorem 1.6. Let 0 < p < 1. The Fourier multiplier ϕ is 
ontra
tive on Lp or on Lp(Sp)
if and only if the S
hur multiplier ϕ̋ is 
ontra
tive on Sp or on Sp(Sp) if and only if

the sequen
e ϕ is the Fourier transform of an atomi
 measure of the form

∑

agδg on T

with

∑|ag|p 6 1.

The emphasis put on relative S
hur multipliers motivates the natural question of how

the norm of an elementary S
hur multiplier, that is, a rank 1 matrix (̺r,c) = (xryc), gets
a�e
ted when the a
tion of ̺ is restri
ted to matri
es with a given support. The surprising

answer is the following theorem.

Theorem 1.7. Let I ⊆ R × C and 
onsider (xr)r∈R and (yc)c∈C . The relative S
hur

multiplier on S∞I given by (xryc)(r,c)∈I has norm sup(r,c)∈I |xryc|.

Let us �nally des
ribe the 
ontent of this arti
le. Se
tion 2 develops transfer te
hniques

for Fourier and S
hur multipliers provided by a blo
k matrix Szeg® limit theorem. This

theorem provides lo
al embeddings of Lψ into Sψ . Se
tion 3 shows how interpolation may

be used to de�ne su
h embeddings for the s
ale of Lp spa
es. Se
tion 4 is devoted to the

transfer of la
unary sets into la
unary matrix patterns; the un
onditional 
onstant of a set

Λ is related to the size of the sumsets it 
ontains. Se
tion 5 deals with Toeplitz S
hur

multipliers for p < 1 and 
omments on the 
ase p > 1. The Riesz proje
tion and the Hilbert

transform are studied in Se
tion 6. In Se
tion 7, the presen
e of sumsets in a spe
trum Λ
is shown to be an obstru
tion for the existen
e of 
ompletely un
onditional bases for LpΛ.
The last se
tion provides a norm-preserving extension for partially spe
i�ed rank 1 S
hur

multipliers.

Notation and terminology. Let T = {z ∈ C : |z| = 1} be the 
ir
le.

Given an index set C and c ∈ C, ec is the sequen
e de�ned on C as the indi
ator

fun
tion χ{c} of the singleton {c}, so that (ec)c∈C is the 
anoni
al S
hauder basis of the
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Hilbert spa
e of square summable sequen
es indexed by C, denoted by ℓ2C . We will use the

notation ℓ2n = ℓ2{1,2,...,n} and ℓ2 = ℓ2
N
.

Given a produ
t set I = R × C and q = (r, c), the indi
ator fun
tion eq = er,c is the
elementary matrix identi�ed with the linear operator from ℓ2C to ℓ2R that maps ec to er and
all other basis ve
tors to 0. The matrix 
oe�
ient at 
oordinate q of a linear operator x
from ℓ2C to ℓ2R is xq = tr e∗qx, and its matrix representation is (xq)q∈R×C =

∑

q∈R×C xq eq.
The support or pattern of x is {q ∈ R× C : xq 6= 0}.

The spa
e of all bounded operators from ℓ2C to ℓ2R is denoted by B(ℓ2C , ℓ
2
R), and its

subspa
e of 
ompa
t operators is denoted by S∞.

Let ψ : R+ → R+
be a 
ontinuous nonde
reasing fun
tion vanishing only at 0. The

S
hatten-von-Neumann-Orli
z 
lass Sψ is the spa
e of those 
ompa
t operators x from ℓ2C
to ℓ2R su
h that trψ(|x|/a) < ∞ for some a > 0. If ψ is 
onvex, then Sψ is a Bana
h spa
e

for the norm given by ‖x‖Sψ = inf{a > 0 : trψ(|x|/a) 6 1}. Otherwise, Sψ is a Fré
het

spa
e for the F-norm given by ‖x‖Sψ = inf{a > 0 : trψ(|x|/a) 6 a} (see [26, Chapter 3℄).

This spa
e may also be 
onstru
ted as the non
ommutative Lebesgue-Orli
z spa
e Lψ(tr)
asso
iated with a 
orner of the von Neumann algebra B(ℓ2C ⊕ ℓ2R) endowed with the normal,

faithful, semi�nite tra
e tr. If ψ is the power fun
tion t 7→ tp, this spa
e is denoted Sp; if

p > 1, then ‖x‖Sp = (tr |x|p)1/p; if p < 1, then ‖x‖Sp = (tr |x|p)1/(1+p).
If #C = #R = n, then B(ℓ2C , ℓ

2
R) identi�es with the spa
e of n×n matri
es denoted S∞n ,

and we write Sψn for Sψ. Let (Rn × Cn) be a sequen
e of �nite sets su
h that ea
h element

of R×C eventually is in Rn×Cn. Then the sequen
e of operators Pn : x 7→ ∑

q∈Rn×Cn
xq eq

tends pointwise to the identity on Sψ .
For I ⊆ R×C, we de�ne the spa
e SψI as the 
losed subspa
e of Sψ spanned by (eq)q∈I ;

this 
oin
ides with the subspa
e of those x ∈ Sψ whose support is a subset of I.
A relative S
hur multiplier on SψI is a sequen
e ̺ = (̺q)q∈I ∈ CI su
h that the asso
iated

S
hur multipli
ation operator M̺ de�ned by eq 7→ ̺qeq for q ∈ I is bounded on SψI . The

norm ‖̺‖M(Sψ
I
) of ̺ is de�ned as the norm of M̺. This norm is the supremum of the norm

of its restri
tions to �nite re
tangle sets R′ × C′
. We used [31, 32℄ as a referen
e.

Let Γ be a dis
rete group with identity ǫ. The redu
ed C∗
-algebra of Γ is the 
losed

subspa
e spanned by the left translations λγ (the linear operators de�ned on ℓ2Γ by λγ eβ =
eγβ) in B(ℓ2Γ ); we denote it by C, set in roman type. The von Neumann algebra of Γ
is its weak

∗

losure, endowed with the normal, faithful, normalised �nite tra
e τ de�ned

by τ(x) = xǫ,ǫ; we denote it by L∞
. Let ψ : R+ → R+

be a 
ontinuous nonde
reasing fun
tion

vanishing only at 0. We de�ne the non
ommutative Lebesgue-Orli
z spa
e Lψ of Γ as the


ompletion of L∞
with respe
t to the norm given by ‖x‖Lψ = inf{a > 0 : τ(ψ(|x|/a)) 6 1} if

ψ is 
onvex, and with respe
t to the F-norm given by ‖x‖Lψ = inf{a > 0 : τ(ψ(|x|/a)) 6 a}
otherwise. If ψ is the power fun
tion t 7→ tp, this spa
e is denoted Lp; if p > 1, then

‖x‖Lp = τ(|x|p)1/p; if p < 1, then ‖x‖Lp = τ(|x|p)1/(1+p). The Fourier 
oe�
ient of x at γ
is xγ = τ(λ∗γx) = xγ,ǫ and its Fourier series is

∑

γ∈Γ xγλγ . The spe
trum of an element x

is {γ ∈ Γ : xγ 6= 0}. Let X be the C∗
-algebra C or the spa
e Lψ and let Λ ⊆ Γ ; then we

de�ne XΛ as the 
losed subspa
e of X spanned by the λγ with γ ∈ Λ. We skip the general

question of when this 
oin
ides with the subspa
e of those x ∈ X whose spe
trum is a subset

of Λ, but note that this is the 
ase if Γ is an amenable group (or if Γ has the AP and L∞
has

the QWEP by [15, Theorem 4.4℄) and ψ is the power fun
tion t 7→ tp. Note also that our

de�nition of XΛ makes it a subspa
e of the heart of X : if x ∈ XΛ, then τ(ψ(|x|/a)) is �nite
for all a > 0.

A relative Fourier multiplier on XΛ is a sequen
e ϕ = (ϕγ)γ∈Λ ∈ CΛ su
h that the

asso
iated Fourier multipli
ation operator Mϕ de�ned by λγ 7→ ϕγλγ for γ ∈ Λ is bounded

on XΛ. The norm ‖ϕ‖M(XΛ) of ϕ is de�ned as the norm of Mϕ. Fourier multipliers on the

whole of the C∗
-algebra C are also 
alled multipliers of the Fourier algebra A(Γ ) (whi
h may

be identi�ed with L1
); they form the set M(A(Γ )).

The spa
e Sψ(Sψ) is the spa
e of those 
ompa
t operators x from ℓ2 ⊗ ℓ2C to ℓ2⊗ ℓ2R su
h

that ‖x‖Sψ(Sψ) = inf{a : tr⊗ trψ(|x|/a) 6 1}: it is the non
ommutative Lebesgue-Orli
z
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spa
e Lψ(tr⊗ tr) asso
iated with a 
orner of the von Neumann algebra B(ℓ2)⊗ B(ℓ2C ⊕ ℓ2R).
One may think of Sψ(Sψ) as the Sψ-valued S
hatten-von-Neumann 
lass; we de�ne the matrix


oe�
ient of x at q by xq = (IdSψ ⊗ tr)
(

(Idℓ2 ⊗ e∗q)x
)

∈ Sψ and its matrix representation by

∑

q∈R×C xq ⊗ eq. The support of x and the subspa
e SψI (S
ψ) are de�ned in the same way

as SψI .
Similarly, the spa
e Lψ(tr⊗τ) is the non
ommutative Lebesgue-Orli
z spa
e asso
iated

with the von Neumann algebra B(ℓ2) ⊗ L∞ = L∞(tr⊗τ). One may think of Lψ(tr⊗τ) as
the Sψ-valued non
ommutative Lebesgue spa
e; we de�ne the Fourier 
oe�
ient of x at γ
by xγ = (IdSψ ⊗ τ)

(

(Idℓ2 ⊗λ∗γ)x
)

∈ Sψ and its Fourier series by

∑

γ∈Γ xγ ⊗λγ ; the spe
trum
of x is de�ned a

ordingly. The subspa
e LψΛ(tr⊗τ) is the 
losed subspa
e of Lψ(tr⊗τ)
spanned by the x⊗ λγ with x ∈ Sψ and γ ∈ Λ.

An operator T on SψI is bounded on SψI (S
ψ) if the linear operator IdSψ ⊗ T de�ned

by x ⊗ y 7→ x ⊗ T (y) for x ∈ Sψ and y in SψI on �nite tensors extends to a bounded

operator IdSψ ⊗ T on SψI (S
ψ). The norm of a S
hur multiplier ̺ on SψI (S

ψ) is de�ned as the

norm of IdSψ ⊗M̺. Similar de�nitions hold for an operator T on LψΛ; the norm of a Fourier

multiplier ϕ on LψΛ(tr⊗τ) is the norm of IdSψ ⊗Mϕ on LψΛ(tr⊗τ).
Let ψ be the power fun
tion t 7→ tp with p > 1; the norms on Sp(Sp) and Lp(tr⊗τ)

des
ribe the 
anoni
al operator spa
e stru
ture on Sp and Lp, respe
tively (see [31, Corol-

lary 1.4℄); we should rather use the notation Sp[Sp] and Sp[Lp]. This explains the following
terminology. An operator T on SpI is 
ompletely bounded (
.b.) if IdSp ⊗ T is bounded

on SpI(S
p); the norm of IdSp ⊗T is the 
omplete norm of T (
ompare [31, Lemma 1.7℄). The


omplete norm ‖̺‖Mcb(S
p

I
) of a S
hur multiplier ̺ is de�ned as the 
omplete norm of M̺.

Note that the 
omplete norm of a S
hur multiplier ̺ on S∞I is equal to its norm ([28, Theo-

rem 3.2℄): ‖̺‖Mcb(S∞

I
) = ‖̺‖M(S∞

I
). The 
omplete norm ‖ϕ‖Mcb(L

p

Λ
) of a Fourier multiplier ϕ

is de�ned as the 
omplete norm of Mϕ. The 
omplete norm of an operator T on CΛ is the

norm of IdS∞ ⊗T on the subspa
e of S∞⊗C spanned by the x⊗λγ with x ∈ S∞ and γ ∈ Λ.
In the 
ase Λ = Γ , ϕ is also 
alled a 
.b. multiplier of the Fourier algebra A(Γ ) and one

writes ϕ ∈ Mcb(A(Γ )). If Γ is amenable, the 
omplete norm of a Fourier multiplier ϕ on CΛ
is equal to its norm: ‖ϕ‖Mcb(CΛ) = ‖ϕ‖M(CΛ) (this follows from [7, Corollary 1.8℄ as shown

by the proof of Theorem 2.7 (c)).
An element whose norm is at most 1 is 
ontra
tive, and if its 
omplete norm is at most 1,

it is 
ompletely 
ontra
tive.

If Γ is abelian, let G be its dual group and endow it with its unique normalised Haar

measure m. Then the Fourier transform identi�es the C∗
-algebra C as the spa
e of 
on-

tinuous fun
tions on G, L∞
as the spa
e of 
lasses of bounded measurable fun
tions

on (G,m), Lψ as the Lebesgue-Orli
z spa
e of 
lasses of ψ-integrable fun
tions on (G,m),
τ(x) as

∫

G
x(g) dm(g), Lψ(tr⊗τ) as the Sψ-valued Lebesgue-Orli
z spa
e Lψ(Sψ) and xγ

as x̂(γ).

2 Transfer between Fourier and S
hur multipliers

Let Λ be a subset of a dis
rete group Γ and let ϕ be a relative Fourier multiplier on CΛ,
the 
losed subspa
e spanned by (λγ)γ∈Λ in the redu
ed C∗

-algebra of Γ . Let x ∈ CΛ;
the matrix of x is 
onstant down the diagonals in the sense that for every (r, c) ∈ Γ × Γ ,
xr,c = xrc−1,ǫ = xrc−1

. We say that x is a Toeplitz operator on ℓ2Γ . Furthermore, the matrix

of the Fourier produ
t Mϕx of ϕ with x is given by (Mϕx)r,c = ϕrc−1xr,c. This equality

shows that if we set Λ̋ = {(r, c) ∈ Γ × Γ : rc−1 ∈ Λ} and ϕ̋r,c = ϕrc−1
, then Mϕx is the

S
hur produ
t Mϕ̋x of ϕ̋ with x. We have transferred the Fourier multiplier ϕ into the S
hur

multiplier ϕ̋. This proves at on
e that the norm of the Fourier multiplier ϕ on CΛ is the

norm of the S
hur multiplier ϕ̋ on the subspa
e of Toeplitz elements of B(ℓ2Γ ) with support

in Λ̋, and that the same holds for 
omplete norms.
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We shall now provide the means to generalise this identi�
ation to the setting of Lebesgue-

Orli
z spa
es Lψ. We shall bypass the main obsta
le, that Lψ may not be 
onsidered as a

subspa
e of Sψ , by the Szeg® limit theorem as stated by Erik Bédos ([2℄).

Consider a dis
rete amenable group Γ ; it admits a Følner averaging net of sets (Γι), that
is,

• ea
h Γι is a �nite subset of Γ ;

• #(γΓι∆Γι) = o(#Γι) for ea
h γ ∈ Γ .

Ea
h set Γι 
orresponds to the orthogonal proje
tion pι of ℓ
2
Γ onto its (#Γι)-dimensional

subspa
e of sequen
es supported by Γι. The trun
ate of a selfadjoint operator y ∈ B(ℓ2Γ )
with respe
t to Γι is yι = pιyp

∗
ι ; it has #Γι eigenvalues αj , 
ounted with multipli
ities, and

its normalised 
ounting measure of eigenvalues is

µι =
1

#Γι

#Γι
∑

j=1

δαj .

If y is a Toeplitz operator, that is, if y ∈ L∞
, Erik Bédos ([2, Theorem 10℄) proved that (µι)


onverges weak

∗
to the spe
tral measure of y with respe
t to τ , whi
h is the unique Borel

probability measure µ on R su
h that

τ(f(y)) =

∫

R

f(α)dµ(α)

for every 
ontinuous fun
tion f on R that tends to zero at in�nity. If Γ is abelian, then

y may be identi�ed as the 
lass of a real-valued bounded measurable fun
tion on the group G
dual to Γ and µ is the distribution of y.

Let us now state and prove the Lψ version of the identi�
ation des
ribed at the beginning

of this se
tion.

Theorem 2.1. Let Γ be a dis
rete amenable group and let ψ : R+ → R+
be a 
ontinuous

nonde
reasing fun
tion vanishing only at 0. Let Λ ⊆ Γ and ϕ ∈ C
Λ
. Consider the asso
iated

Toeplitz set Λ̋ = {(r, c) ∈ Γ ×Γ : rc−1 ∈ Λ} and the Toeplitz matrix de�ned by ϕ̋r,c = ϕrc−1
.

The norm of the relative Fourier multiplier ϕ on LψΛ is bounded by the norm of the relative

S
hur multiplier ϕ̋ on Sψ
Λ̋
.

Proof. A Toeplitz matrix has the form (xrc−1)(r,c)∈Λ̋. Our de�nition of the spa
e LψΛ (in

the se
tion on Notation and terminology) ensures that we may suppose that only a �nite

number of the xγ are nonzero for the 
omputation of the norm of ϕ. Then (xrc−1)(r,c)∈Λ̋ is

the matrix of the operator x =
∑

γ∈Λ xγλγ for the 
anoni
al basis of ℓ2Γ .

Let y = x∗x and let ψ̃ be a 
ontinuous fun
tion with 
ompa
t support su
h that ψ̃(t) =
ψ(t) on [0, ‖y‖]. By Szeg®'s limit theorem,

1

#Γι
trψ(yι) =

1

#Γι
tr ψ̃(yι) → τ(ψ̃(y)) = τ(ψ(y)).

We have yι = (xp∗ι )
∗
(xp∗ι ); let us des
ribe how ϕ̋ a
ts on xp∗ι . S
hur multipli
ation with ϕ̋

transforms the matrix of xp∗ι , that is, the trun
ated Toeplitz matrix (xrc−1)(r,c)∈Λ̋∩Γ×Γι
,

into the matrix (ϕrc−1xrc−1)(r,c)∈Λ̋∩Γ×Γι
so that it transforms xp∗ι into (Mϕx)p

∗
ι .

Remark 2.2. In the 
ase of a �nite abelian group, no limit theorem is needed. This 
ase was


onsidered in [22, Proposition 2.5 (b)℄; 
ompare with [29, Chapter 6, Lemma 3.8℄.

Remark 2.3. Our te
hnique proves in fa
t that the norm of a Fourier multiplier is the upper

limit of the norm of the 
orresponding relative S
hur multipliers on subspa
es of trun
ated

Toeplitz matri
es. We ignore whether or not it is a
tually their supremum.
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Remark 5.2 illustrates that the two norms in Theorem 2.1 are di�erent in general. This

is not so in the Sψ-valued 
ase be
ause of the following argument. It has been used (�rst

in [5℄, see [6, Proposition D.6℄) to show that the 
omplete norm of the Fourier multiplier ϕ
on CΛ bounds the 
omplete norm of the S
hur multiplier ϕ̋ on S∞

Λ̋
, so that we have in full

generality ‖ϕ‖Mcb(CΛ) = ‖ϕ̋‖Mcb(S∞

Λ̋
).

Lemma 2.4. Let Γ be a dis
rete group and let R and C be subsets of Γ . With Λ ⊆ Γ

asso
iate Λ̋ = {(r, c) ∈ R × C : rc−1 ∈ Λ}; given ϕ ∈ CΛ, de�ne ϕ̋ ∈ CΛ̋ by ϕ̋r,c = ϕrc−1
.

Let ψ : R+ → R+
be a 
ontinuous nonde
reasing fun
tion vanishing only at 0. The norm

of the relative S
hur multiplier ϕ̋ on Sψ
Λ̋
(Sψ) is bounded by the norm of the relative Fourier

multiplier ϕ on LψΛ(tr⊗τ).

Proof. We adapt the argument in [31, Lemma 8.1.4℄. Let xq ∈ Sψ, of whi
h only a �nite

number are nonzero. The spa
e Lψ(tr⊗ tr⊗τ) is a left and right L∞(tr⊗ tr⊗τ)-module,

and

∑

γ∈Γ eγγ ⊗ λγ is a unitary in L∞(tr⊗τ) so that

∥

∥

∥

∑

q∈Λ̋

xq ⊗ eq

∥

∥

∥

Sψ
Λ̋
(Sψ)

=
∥

∥

∥

(

Id⊗
∑

r∈R

er,r ⊗ λr

)(

∑

q∈Λ̋

xq ⊗ eq ⊗ λǫ

)(

Id⊗
∑

c∈C

ec,c ⊗ λ∗c

)∥

∥

∥

Lψ(tr⊗ tr⊗τ)

=

∥

∥

∥

∥

∑

(r,c)∈Λ̋

xr,c ⊗ er,c ⊗ λrc−1

∥

∥

∥

∥

Lψ(tr⊗ tr⊗τ)

=

∥

∥

∥

∥

∑

γ∈Λ

(

∑

rc−1=γ

xr,c ⊗ er,c

)

⊗ λγ

∥

∥

∥

∥

LψΛ(tr⊗ tr⊗τ)

.

This yields an isometri
 embedding of Sψ
Λ̋
(Sψ) in LψΛ(tr⊗ tr⊗τ). As Sψ(Sψ) is the S
hatten-

von-Neumann-Orli
z 
lass for the Hilbert spa
e ℓ2 ⊗ ℓ2Γ , whi
h may be identi�ed with ℓ2,

∥

∥

∥

∑

q∈Λ̋

xq ⊗ ϕ̋q eq

∥

∥

∥

Sψ
Λ̋
(Sψ)

=

∥

∥

∥

∥

∑

γ∈Λ

(

∑

rc−1=γ

xr,c ⊗ er,c

)

⊗ ϕγλγ

∥

∥

∥

∥

LψΛ(tr⊗ tr⊗τ)

6 ‖IdSψ ⊗Mϕ‖
∥

∥

∥

∑

q∈Λ̋

xq ⊗ eq

∥

∥

∥

Sψ
Λ̋
(Sψ)

.

Remark 2.5. This proof also shows the following transfer: let (ri) and (cj) be sequen
es

in Γ , 
onsider Λ̆ = {(i, j) ∈ N× N : ricj ∈ Λ} and de�ne ϕ̆ ∈ CΛ̆ by ϕ̆(i, j) = ϕ(ricj). Then

the norm of the relative S
hur multiplier ϕ̆ on Sψ
Λ̆
(Sψ) is bounded by the norm of the relative

Fourier multiplier IdSψ ⊗Mϕ on LψΛ(tr⊗τ) (
ompare with [32, Theorem 6.4℄). In parti
ular,

if the ricj are pairwise distin
t, this permits us to transfer every S
hur multiplier, not just

the Toeplitz ones. See [22, Se
tion 11℄ for appli
ations of this transfer.

We shall now prove that the two norms in this lemma are in fa
t equal. As we want

to 
ompute norms of multipliers on Sψ-valued spa
es, we shall generalise the Szeg® limit

theorem to the blo
k matrix 
ase, whi
h was not 
onsidered in [2℄. This is the analogue of

the s
alar 
ase for selfadjoint elements y ∈ S∞n ⊗ L∞
, whose S∞n -valued spe
tral measure µ

is de�ned by

∫

R

f(α)dµ(α) = IdS∞

n
⊗ τ(f(y))

for every 
ontinuous fun
tion f on R that tends to zero at in�nity.
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The orthogonal proje
tion p̃ι = Idℓ2n ⊗ pι de�nes the trun
ate yι = p̃ιyp̃
∗
ι ∈ S∞n ⊗ B(ℓ2Γι),

and the S∞n -valued normalised 
ounting measure of eigenvalues µι by
∫

R

f(α)dµι(α) = IdS∞

n
⊗ tr

#Γι
(f(yι))

for every 
ontinuous fun
tion f on R that tends to zero at in�nity.

Theorem 2.6 (Matrix Szeg® limit theorem). Let Γ be a dis
rete amenable group and let

(Γι) be a Følner averaging net for Γ . Let y be a selfadjoint element of S∞n ⊗ L∞
. The

net (µι) of S∞n -valued normalised 
ounting measures of eigenvalues of the trun
ates of y
with respe
t to Γι 
onverges in the weak

∗
topology to the spe
tral measure of y:

∫

R

f(α)dµι(α) → IdS∞

n
⊗ τ(f(y))

for every 
ontinuous fun
tion f on R that tends to zero at in�nity.

Sket
h of proof. We �rst suppose that y =
∑

γ∈Γ yγ ⊗ λγ with only a �nite number of

the yγ ∈ S∞n nonzero. The S∞n -valued matrix of the trun
ate yι of y for the 
anoni
al basis

of ℓ2Γι is (yrc−1)(r,c)∈Γι×Γι . As the trun
ates yι of y are uniformly bounded, it su�
es to

prove that

Id⊗ tr

#Γι
(ykι ) → Id⊗ τ(yk)

for every k. This is trivial if k = 0. If k = 1, then

Id⊗ tr

#Γι
(yι) =

1

#Γι

∑

c∈Γι

yc,c = Id⊗ τ(y)

as yc,c = ycc−1 = yǫ. If k > 2, the same formula holds with yk instead of y:

Id⊗ τ(yk) = Id⊗ tr

#Γι
(p̃ιy

kp̃∗ι ),

so that we wish to prove

Id⊗ tr(p̃ιy
kp̃∗ι − (p̃ιyp̃

∗
ι )
k
) = o(#Γι).

Note that

∥

∥Id⊗ tr
(

p̃ιy
kp̃∗ι − (p̃ιyp̃

∗
ι )
k)∥
∥

S1
n

6 ‖p̃ιykp̃∗ι − (p̃ιyp̃
∗
ι )
k‖S1(S1

n)
.

Lemma 5 in [2℄ provides the following estimate. As

p̃ιy
kp̃∗ι − (p̃ιyp̃

∗
ι )
k = p̃ιy

k−1(yp̃∗ι − p̃∗ι p̃ιyp̃
∗
ι ) + (p̃ιy

k−1p̃∗ι − (p̃ιyp̃
∗
ι )
k−1)p̃ιyp̃

∗
ι ,

an indu
tion yields

‖p̃ιykp̃∗ι − (p̃ιyp̃
∗
ι )
k‖S1(S1

n)
6 (k − 1)‖y‖k−1

S∞

n ⊗L∞‖yp̃∗ι − p̃∗ι p̃ιyp̃
∗
ι ‖S1(S1

n)
.

It su�
es to 
onsider the very last norm for ea
h term yγ ⊗ λγ of y: let h ∈ ℓ2n and β ∈ Γ ;
as

(

(yγ ⊗ λγ)p̃
∗
ι − p̃∗ι p̃ι(yγ ⊗ λγ)p̃

∗
ι

)

(h⊗ eβ) =

{

yγ(h)eγβ if β ∈ Γι and γβ /∈ Γι

0 otherwise,

the de�nition of a Følner averaging net yields

‖(yγ ⊗ λγ)p̃
∗
ι − p̃∗ι p̃ι(yγ ⊗ λγ)p̃

∗
ι ‖S1(S1

n)
6 #(Γι \ γ−1Γι)‖yγ‖S1

n
= o(#Γι).

An approximation argument as in the proof of [2, Proposition 4℄ permits us to 
on
lude

for y ∈ S∞n ⊗ L∞
.
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Here is the promised strengthening of Lemma 2.4 together with three variants.

Theorem 2.7. Let Γ be a dis
rete amenable group. Let Λ ⊆ Γ and ϕ ∈ CΛ. Consider

the asso
iated Toeplitz set Λ̋ = {(r, c) ∈ Γ × Γ : rc−1 ∈ Λ} and the Toeplitz matrix de�ned

by ϕ̋r,c = ϕrc−1
.

(a) Let ψ : R+ → R+
be a 
ontinuous nonde
reasing fun
tion vanishing only at 0. The

norm of the relative Fourier multiplier ϕ on LψΛ(tr⊗τ) and the norm of the relative

S
hur multiplier ϕ̋ on Sψ
Λ̋
(Sψ) are equal.

(b) Let p > 1. The 
omplete norm of the relative Fourier multiplier ϕ on LpΛ and the


omplete norm of the relative S
hur multiplier ϕ̋ on Sp
Λ̋
are equal:

‖ϕ‖Mcb(L
p

Λ
) = ‖ϕ̋‖Mcb(S

p

Λ̋
).

(c) The norm of the relative Fourier multiplier ϕ on CΛ, its 
omplete norm, the norm of

the relative S
hur multiplier ϕ̋ on S∞
Λ̋
, and its 
omplete norm are equal:

‖ϕ‖M(CΛ) = ‖ϕ‖Mcb(CΛ) = ‖ϕ̋‖Mcb(S∞

Λ̋
) = ‖ϕ̋‖M(S∞

Λ̋
).

(d) Suppose that Λ = Γ . The norm of the Fourier algebra multiplier ϕ, its 
omplete norm,

the norm of the S
hur multiplier ϕ̋ on S∞, and its 
omplete norm are equal:

‖ϕ‖M(A(Γ )) = ‖ϕ‖Mcb(A(Γ )) = ‖ϕ̋‖Mcb(S∞) = ‖ϕ̋‖M(S∞).

Proof. (a). Combine the argument in Theorem 2.1 with the matrix Szeg® limit theorem and

apply Lemma 2.4.

(c). Re
all that the 
omplete norm of a S
hur multiplier ϕ̋ on S∞
Λ̋

is equal to its norm

([28, Theorem 3.2℄). Re
all also that the norm of a Fourier multiplier χ on C is equal to

its 
omplete norm, be
ause Γ is amenable. Moreover, it 
oin
ides with the norm of χ in

A(Γ ) ([7, Corollary 1.8℄). Let ϕ be a relative 
ontra
tive Fourier multiplier on CΛ; 
ompose

it with the trivial 
hara
ter of Γ to obtain a 
ontra
tive form on CΛ. Then, by the Hahn-

Bana
h extension theorem, ϕ is the restri
tion of a 
ontra
tive element χ in A(Γ ). Now χ is

a 
ompletely 
ontra
tive Fourier multiplier on C, and so is ϕ on CΛ. The 
on
lusion follows

from (a) and (b).

3 Lo
al embeddings of Lp into Sp

The proof of Theorem 2.1 
an be interpreted as an embedding of Lψ into an ultraprodu
t

of �nite-dimensional spa
es Sψn that intertwines Fourier and Toeplitz S
hur multipliers. If

we restri
t ourselves to power fun
tions ψ : t 7→ tp with p > 1, su
h embeddings are well

known and the proof of Theorem 2.7 does not need the full strength of the matrix Szeg®

limit theorem but only the existen
e of su
h embeddings. In this se
tion, we explain two

ways to obtain them by interpolation.

The �rst way is to extend the 
lassi
al result that the redu
ed C∗
-algebra C of a dis
rete

group Γ has the 
ompletely positive approximation property if Γ is amenable. We follow

the approa
h of [6, Theorem 2.6.8℄. Let Γ be a dis
rete amenable group and let Γι be a

Følner averaging net of sets. As above, we denote by pι the orthogonal proje
tion from ℓ2Γ
to ℓ2Γι . De�ne the 
ompression φι and the embedding ψι by

φι : C → B(ℓ2Γι)

x 7→ pιxp
∗
ι

and ψι : B(ℓ
2
Γι) → C

er,c 7→ (1/#Γι)λrλc−1 .

(3.1)

If we endow B(ℓ2Γι) with the normalised tra
e, these maps are unital 
ompletely positive,

tra
e preserving (and normal), and the net (ψιφι) 
onverges pointwise to the identity of
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C. One 
an therefore extend them by interpolation to 
ompletely positive 
ontra
tions

on the respe
tive non
ommutative Lebesgue spa
es. Re
all that Lp(B(ℓ2Γι), (1/#Γι) tr) is

(#Γι)
−1/p

Sp#Γι
. We get a net of 
omplete 
ontra
tions

φ̃ι : L
p → (#Γι)

−1/p
Sp#Γι

and ψ̃ι : (#Γι)
−1/p

Sp#Γι
→ Lp

su
h that (ψ̃ιφ̃ι) 
onverges pointwise to the identity of Lp. Moreover, the de�nitions (3.1)

show that these maps also intertwine Fourier and Toeplitz S
hur multipliers.

This approa
h is more 
anoni
al, as it allows us to extend the transfer to ve
tor-valued

spa
es in the sense of [31, Chapter 3℄. Re
all that for any hyper�nite semi�nite von Neumann

algebra M and any operator spa
e E, one 
an de�ne Lp(M,E). For p = ∞, this spa
e is

de�ned as M ⊗min E; for p = 1, this spa
e is de�ned as Mop
∗ ⊗̂E; these spa
es form an

interpolation s
ale for the 
omplex method when 1 6 p 6 ∞. For us, M will be B(ℓ2) or
the group von Neumann algebra L∞

. As the maps ψι and φι are unital 
ompletely positive

and tra
e preserving and normal, they de�ne simultaneously 
omplete 
ontra
tions on M
and M∗. By interpolation, the maps ψι ⊗ IdE and φι ⊗ IdE are still 
omplete 
ontra
tions

on the spa
es Lp(E) and Sp[E]. Let ϕ ∈ CΓ ; the transfer shows that the norm of IdE ⊗Mϕ

on Lp(E) is bounded by the norm of IdE ⊗ Mϕ̋ on Sp[E] and that their 
omplete norms


oin
ide. In formulas,

‖IdE ⊗Mϕ‖B(Lp(E)) 6 ‖IdE ⊗Mϕ̋‖B(Sp[E]),

‖IdE ⊗Mϕ‖cb(Lp(E)) = ‖IdE ⊗Mϕ̋‖cb(Sp[E]).

The 
ompression φι provides a two-sided approximation of an element x, whereas the
proof of Theorem 2.1 uses only a one-sided approximation. This subtlety makes a di�eren
e

in our se
ond way to obtain embeddings, a dire
t proof by 
omplex interpolation.

Proposition 3.1. Let Γ be a dis
rete amenable group and let (µι) be a Reiter net of means

for Γ :

• ea
h µι is a positive sequen
e summing to 1 with �nite support Γι ⊆ Γ and viewed as

a diagonal operator from ℓ2Γι to ℓ
2
Γ , so that

‖µι‖S1 =
∑

γ∈Γι

(µι)γ = 1;

• the net (µι) satis�es, for ea
h γ ∈ Γ , Reiter's Property P1:

∑

β∈Γ

∣

∣(µι)γ−1β − (µι)β
∣

∣ → 0.

Let x ∈ S∞n ⊗ L∞ = L∞(tr⊗τ) and p > 1. Then

lim sup ‖xµ1/p
ι ‖Sp(Spn) = ‖x‖Lp(tr⊗τ).

Proof. Consider x =
∑

γ∈Γ xγ ⊗ λγ with only a �nite number of the xγ ∈ S∞n nonzero. As

∑

β∈Γ

∣

∣(µι)
1/2
γ−1β − (µι)

1/2
β

∣

∣

2
6

∑

β∈Γ

∣

∣(µι)γ−1β − (µι)β
∣

∣,

Property P1 implies Property P2:

‖λγµ1/2
ι − µ1/2

ι λγ‖S2 → 0,

so that

‖xµ1/2
ι − µ1/2

ι x‖S2(S2
n)

→ 0.
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As the S∞n -valued matrix of x for the 
anoni
al basis of ℓ2Γ is (xrc−1)(r,c)∈Γ×Γ ,

‖xµ1/2
ι ‖2S2(S2

n)
=

∑

(r,c)∈Γ×Γ

‖xrc−1‖2Sn2 (µι)c

=
∑

c∈Γ

(µι)c

∑

r∈Γ

‖xrc−1‖2Sn2

=
∑

c∈Γ

(µι)c‖x‖2L2(tr⊗τ) = ‖x‖2L2(tr⊗τ).

By density and 
ontinuity, the result extends to all x ∈ L2(tr⊗τ).
Let us prove now that for x ∈ L∞(tr⊗τ),

lim sup ‖xµι‖S1(S1
n)

6 ‖x‖L1(tr⊗τ).

The polar de
omposition x = u|x| yields a fa
torisation x = ab with a = u|x|1/2 and b =
|x|1/2 in L∞(tr⊗τ) su
h that

‖a‖L2(tr⊗τ) = ‖b‖L2(tr⊗τ) = ‖x‖1/2L1(tr⊗τ)

‖a‖L∞(tr⊗τ) = ‖x‖1/2L∞(tr⊗τ).

Then xµι = a(bµ
1/2
ι −µ1/2

ι b)µ
1/2
ι +aµ

1/2
ι bµ

1/2
ι , so that the Cau
hy-S
hwarz inequality yields

‖xµι‖S1(S1
n)

6 ‖a‖L∞(tr⊗τ)‖(bµ1/2
ι − µ1/2

ι b)µ1/2
ι ‖S1(S1

n)
+ ‖aµ1/2

ι bµ1/2
ι ‖S1(S1

n)

6 ‖a‖L∞(tr⊗τ)‖bµ1/2
ι − µ1/2

ι b‖S2(S2
n)

+ ‖a‖L2(tr⊗τ)‖b‖L2(tr⊗τ)

and therefore our 
laim. Now 
omplex interpolation yields

lim sup ‖xµ1/p
ι ‖Sp(Spn) 6 ‖x‖Lp(tr⊗τ)

for x ∈ L∞(tr⊗τ) and p ∈ [1,∞]. In fa
t, 
onsider the fun
tion f(z) = u|x|pzµzι analyti


in the strip 0 < ℑz < 1 and 
ontinuous on its 
losure; then f(it) is a produ
t of unitaries

for t ∈ R, so that ‖f(it)‖L∞(tr⊗τ) = 1. Also

‖f(1 + it)‖S1(S1
n)

= ‖|x|pµι‖S1(S1
n)
.

As Sp(Spn) is the 
omplex interpolation spa
e (S∞(S∞n ), S1(S1n))1/p,

‖xµ1/p
ι ‖Sp(Spn) = ‖f(1/p)‖Sp(Spn) 6 ‖|x|pµι‖1/pS1(S1

n)
.

Then, taking the upper limit and using the estimate on S1(S1n),

lim sup ‖xµ1/p
ι ‖Sp(Spn) 6 lim sup ‖|x|pµι‖1/pS1(S1

n)

6 ‖|x|p‖1/pL1(tr⊗τ) = ‖x‖Lp(tr⊗τ).

The reverse inequality is obtained by duality; �rst note that for y ∈ L∞(tr⊗τ),
lim tr⊗ tr(yµι) = tr⊗τ(y).

With the above notation and the inequality for p′,

‖x‖pLp(tr⊗τ) = τ(|x|p) = lim tr |x|pµι = lim trµ1−1/p
ι |x|p−1u∗xµ1/p

ι

6 lim sup ‖µ1−1/p
ι |x|p−1‖

Sp
′

(Sp
′

n )
‖xµ1/p

ι ‖Sp(Spn)
= lim sup ‖|x|p−1µ1−1/p

ι ‖
Sp

′

(Sp
′

n )
‖xµ1/p

ι ‖Sp(Spn)
6 ‖|x|p−1‖Lp′(tr⊗τ) lim sup ‖xµ1/p

ι ‖Sp(Spn),
so that

lim sup ‖xµ1/p
ι ‖Sp(Spn) = ‖x‖pLp(tr⊗τ).
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Remark 3.2. Let µ be any positive diagonal operator with trµ = 1 and p > 2; then

‖xµ1/p‖Sp(Spn) 6 ‖x‖Lp for all x ∈ L∞(tr⊗τ). The Reiter 
ondition is only ne
essary to

go below exponent 2.

We 
ould also have used interpolation with a two-sided approximation by Reiter means.

We would have obtained

lim sup ‖µ1/2p
ι xµ1/2p

ι ‖Sp(Spn) = ‖x‖Lp(tr⊗τ).

This formula is in the spirit of the �rst approa
h of this se
tion.

4 Transfer of la
unary sets into la
unary matrix patterns

As a �rst appli
ation of Theorem 2.7, let us mention that it provides a short
ut for some

arguments in [12℄, as it permits us to transfer la
unary subsets of a dis
rete group Γ into

la
unary matrix patterns in Γ × Γ . Let us �rst introdu
e the following terminology.

De�nition 4.1. Let Γ be a dis
rete group and Λ ⊆ Γ . Let X be the redu
ed C∗
-algebra C

of Γ or its non
ommutative Lebesgue spa
e Lp for p ∈ [1,∞[.

(a) The set Λ is un
onditional in X if the Fourier series of every x ∈ XΛ 
onverges

un
onditionally; i.e., there is a 
onstant D su
h that

∥

∥

∥

∥

∑

γ∈Λ′

xγεγλγ

∥

∥

∥

∥

X

6 D‖x‖X

for �nite Λ′ ⊆ Λ and εγ ∈ T. The minimal 
onstant D is the un
onditional 
onstant

of Λ in X .

(b) If X = C, let X̃ = S∞ ⊗ C; if X = Lp, let X̃ = Lp(tr⊗τ). The set Λ is 
ompletely

un
onditional in X if the Fourier series of every x ∈ X̃Λ 
onverges un
onditionally;

i.e., there is a 
onstant D su
h that

∥

∥

∥

∥

∑

γ∈Λ′

xγ ⊗ εγλγ

∥

∥

∥

∥

X̃

6 D‖x‖X̃

for �nite Λ′ ⊆ Λ and εγ ∈ T. The minimal 
onstant D is the 
omplete un
onditional


onstant of Λ in X .

Un
onditional sets in Lp have been introdu
ed as �Λ(p) sets� in [12, De�nition 1.1℄ for

p > 2. If Γ is abelian, they are Walter Rudin's Λ(p) sets if p > 2 and his Λ(2) sets if

p < 2 (see [36, 3℄). Asma Har
harras ([12, De�nition 1.5, Comments 1.9℄) 
alled 
ompletely

un
onditional sets in Lp �Λ(p)cb sets� if p ∈ ]2,∞[, and �K(p)cb sets� if p ∈ ]1, 2]; her

de�nitions are equivalent to ours by the non
ommutative Khin
hin inequality.

Sets that are un
onditional in C have been introdu
ed as �un
onditional Sidon sets� in

[4℄. If Γ is amenable, Fourier multipliers are automati
ally 
.b. on CΛ, so that su
h sets are

automati
ally 
ompletely un
onditional in C, and there are at least three more equivalent

de�nitions for the 
ounterpart of Sidon sets in an abelian group. If Γ is nonamenable, these

de�nitions are no longer all equivalent, and our notion of 
ompletely un
onditional sets in C

orresponds to Marek Bo»ejko's �
.b. Sidon sets.�

De�nition 4.2. Let 1 6 p 6 ∞ and I be a subset of the produ
t R× C of two index sets.

(a) The set I is un
onditional in the S
hatten-von-Neumann 
lass Sp asso
iated with

B(ℓ2C , ℓ
2
R) if the matrix representation of every x ∈ SpI 
onverges un
onditionally; i.e.,

there is a 
onstant D su
h that

∥

∥

∥

∑

q∈I′

xqεqeq

∥

∥

∥

p
6 D‖x‖p

12



for �nite I ′ ⊆ I and εq ∈ T. The minimal 
onstant D is the un
onditional 
onstant of

I in Sp.

(b) The set I is 
ompletely un
onditional in Sp if the matrix representation of every x ∈
SpI(S

p) 
onverges un
onditionally; i.e., there is a 
onstant D su
h that

∥

∥

∥

∑

q∈I′

xq ⊗ εqeq

∥

∥

∥

p
6 D‖x‖p

for �nite I ′ ⊆ I and εq ∈ T. The minimal 
onstant D is the 
omplete un
onditional


onstant of I in Sp.

Har
harras 
alled un
onditional and 
ompletely un
onditional sets in Sp �σ(p) sets� and
�σ(p)cb sets�, respe
tively ([12, De�nitions 4.1 and 4.4, Remarks 4.6 (iv)℄); she supposed

p < ∞, so that her de�nitions are equivalent to ours by the non
ommutative Khin
hin

inequality.

Proposition 4.3. Let Γ be a dis
rete group. Let Λ ⊆ Γ and 
onsider the asso
iated Toeplitz

set Λ̋ = {(r, c) ∈ Γ × Γ : rc−1 ∈ Λ}. Let p ∈ [1,∞[.

(a) If Γ is amenable, then Λ is un
onditional in Lp if Λ̋ is un
onditional in Sp.

(b) If Λ is 
ompletely un
onditional in Lp, then Λ̋ is 
ompletely un
onditional in Sp. The

onverse holds if Γ is amenable.

Proof. The �rst part of (b) follows by the argument of the proof of [12, Proposition 4.7℄;

let us sket
h it. Consider the isometri
 embedding of the spa
e Sp
Λ̋
(Sp) in LpΛ(tr⊗ tr⊗τ)

that is given in the proof of Lemma 2.4 and apply the equivalent De�nition 1.5 in [12℄ of

the 
omplete un
onditionality of Λ: this gives the 
omplete un
onditionality of Λ̋ in the

equivalent De�nition 4.4 in [12℄.

Un
onditionality in Lp expresses the uniform boundedness of relative unimodular Fourier

multipliers on LpΛ; 
omplete un
onditionality expresses their uniform 
omplete boundedness.

Un
onditionality in Sp expresses the uniform boundedness of relative unimodular S
hur

multipliers on Sp
Λ̋
; 
omplete un
onditionality expresses their uniform 
omplete boundedness.

The se
ond part of (b) follows therefore from Theorem 2.7 (b) and (a) follows from Theo-

rem 2.1.

Remark 4.4. This transfer does not pass to the limit p = ∞ in (b) and is void in (a). Ni
holas
Varopoulos proved that un
onditional sets in S∞ are �nite unions of patterns whose rows

or whose 
olumns 
ontain at most one element, and this ex
ludes sets of the form Λ̋ for any

in�nite Λ ([37, Theorem 4.2℄, see [22, � 5℄ for a reader's guide).

Remark 4.5. See [22, Remark 11.3℄ for an illustration of Proposition 4.3 (b) in a parti
ular


ontext.

Remark 4.6. Let p be an even integer greater than or equal to 4. The existen
e of a σ(p)cb
set that is not a σ(q) set for any q > p ([12, Theorem 4.9℄) be
omes a dire
t 
onsequen
e

of Walter Rudin's 
onstru
tion ([36, Theorem 4.8℄) of a Λ(p) set that is not a Λ(q) set

for any q > p, be
ause this set has property B(p/2) ([12, De�nition 2.4℄) and is therefore

Λ(p)cb by [12, Theorem 1.13℄ (in fa
t, it is even �1-un
onditional� in Lp be
ause B(p/2) is
�p/2-independen
e� ([22, � 11℄)).

Remark 4.7. In the same way, [12, Theorem 5.2℄ be
omes a mere reformulation of [12,

Proposition 3.6℄ if one remembers that the Toeplitz S
hur multipliers are 1-
omplemented in

the S
hur multipliers for an amenable dis
rete group and for all 
lassi
al norms. Basi
ally,

results on Λ(p)cb sets produ
e results on σ(p)cb sets.
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Let us now estimate the 
omplete un
onditional 
onstant of sumsets. In the 
ase Γ = Z,

Har
harras ([12, Prop. 2.8℄) proved that a 
ompletely un
onditional set in Lp 
annot 
ontain
the sumset of 
hara
ters A+A for arbitrary large �nite sets A. In parti
ular, if Λ ⊇ A+A
with A in�nite, then Λ is not a 
ompletely un
onditional set in Lp. Thus, her proof provided
examples of Λ(p) sets that are not Λ(p)cb sets.

We generalise Har
harras' result in two dire
tions. Compare [18, � 1.4℄.

Proposition 4.8. Let Γ be a dis
rete group and p 6= 2. A 
ompletely un
onditional set

in Lp 
annot 
ontain the sumset of two arbitrarily large sets. More pre
isely, let R and C be

subsets of Γ with #R > n and #C > n3
. Then, for any p > 1, the 
omplete un
onditional


onstant of the sumset RC in Lp is at least n|1/2−1/p|
.

Proof. Let r1, . . . , rn be pairwise distin
t elements in R. We shall sele
t indu
tively elements

c1, . . . , cn in C su
h that the ricj are pairwise distin
t. Assume there are c1, . . . , cm−1 su
h

that the indu
tion hypothesis

∀ i, k 6 n ∀ j, l 6 m− 1 (i, j) 6= (k, l) ⇒ ricj 6= rkcl.

holds. We are looking for an element cm ∈ C su
h that

∀ i, k 6 n ∀ l 6 m− 1 ricm 6= rkcl.

Su
h an element exists as long as m 6 n, be
ause the set {r−1
i rkcl : i, k 6 n, l 6 m− 1} has

at most

(

n(n− 1) + 1
)

(m− 1) < n3
elements.

The end of the proof is the same as Har
harras'. The un
onditional 
onstant of the


anoni
al basis of elementary matri
es in Spn is n|1/2−1/p|
; in parti
ular, there is an unimod-

ular S
hur multiplier ϕ̆ on Spn of norm n|1/2−1/p|
(whi
h is also its 
omplete norm, by the

way; see [31, Lemma 8.1.5℄). Let Λ be the sumset {ricj : i, j 6 n}; as the ricj are pairwise
distin
t, we may de�ne a sequen
e ϕ ∈ CΛ by ϕricj = ϕ̆i,j . By Remark 2.5, the 
omplete

norm of the Fourier multiplier ϕ on LpΛ is bounded below by the 
omplete norm of the S
hur

multiplier ϕ̆ on SpI .

Example 4.9. Λ = {2i− 2j : i > j} does not form a 
omplete Λ(p) set for any p 6= 2. Indeed,
{2i − 2j} = Λ ∪ −Λ does not, and if Λ did, then so would −Λ and Λ ∪ −Λ.

5 Toeplitz S
hur multipliers on S
p
for p < 1

When 0 < p < 1, a 
omplete 
hara
terisation of bounded S
hur multipliers of Toeplitz

type has been obtained by Alexey Alexandrov and Vladimir Peller in [1, Theorem 5.1℄.

This result was an easy 
onsequen
e of their deep results on Hankel S
hur multipliers. The

transfer approa
h provides a dire
t proof.

Corollary 5.1. Let 0 < p < 1. Let Γ be a dis
rete abelian group with dual group G. Let

ϕ be a sequen
e indexed by Γ and de�ne the asso
iated Toeplitz matrix ϕ̋ ∈ CΛ̋ by ϕ̋(r, c) =
ϕ(rc−1) for (r, c) ∈ Γ × Γ . Then the following are equivalent:

(a) the sequen
e ϕ is the Fourier transform of an atomi
 measure µ =
∑

agδg on G
with

∑|ag|p 6 1;

(b) the Fourier multiplier ϕ is 
ontra
tive on Lp;

(c) the Fourier multiplier ϕ is 
ontra
tive on Lp(Sp);

(d) the S
hur multiplier ϕ̋ is 
ontra
tive on Sp;

(e) the S
hur multiplier ϕ̋ is 
ontra
tive on Sp(Sp).
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Proof. The impli
ation (d) ⇒ (b) follows from Theorem 2.1. The equivalen
e (c) ⇔ (e)
follows from Theorem 2.7 (a). The 
hara
terisation (a) ⇔ (b) is an old result of Daniel

Oberlin ([23℄). It is plain that (e) ⇒ (d). At last, (a) ⇒ (c) is obvious by the p-triangular
inequality.

Remark 5.2. As a 
onsequen
e, we get that the norm of a Toeplitz S
hur multiplier on Sp(Sp)

oin
ides with its norm on Sp when p < 1. If p ∈ {1, 2,∞}, this holds for every S
hur

multiplier. Let p ∈ ]1, 2[ ∪ ]2,∞[. Then we still do not know whether S
hur multipliers are

automati
ally 
.b. on Sp. But from [31, Proposition 8.1.3℄, we know that (b) and (c) are

not equivalent: if Γ is an in�nite abelian group, there is a bounded Fourier multiplier on Lp

that is not 
.b. This 
ounterexample is easy to des
ribe: if an in�nite set A ⊆ Γ is la
unary

enough, the sumset A+A is un
onditional in Lp (see [18, Theorem 5.13℄). By Proposition 4.8,

it 
annot be 
ompletely un
onditional. In parti
ular, this shows that in Remark 2.3 we


annot remove the restri
tion to trun
ated Toeplitz matri
es in the 
omputation of the

S
hur multiplier norm; that is, (b) ⇒ (d) does not hold.

Remark 5.3. Our questions may also be addressed in the 
ase of a 
ompa
t group like T. A

measurable fun
tion ϕ on T de�nes

• the Fourier multiplier on measurable fun
tions on T by x 7→ ϕx;

• the S
hur multiplier on integral operators on L2(T) with kernel a measurable fun
tion x
on T× T by x 7→ ϕ̋x, where ϕ̋(z, w) = ϕ(zw−1).

Vi
tor Olevskii ([25℄) 
onstru
ted a 
ontinuous fun
tion ϕ that de�nes a bounded Fourier

multiplier on the spa
e of fun
tions with p-summable Fourier series endowed with the norm

given by ‖x‖ =
(
∑|x̂(n)|p

)1/p
for every p ∈ ]1,∞[, while the 
orresponding S
hur multiplier

is not bounded on the S
hatten-von-Neumann 
lass Sp of operators on L2(T) for any p ∈ ]1,
2[ ∪ ]2,∞[.

6 The Riesz proje
tion and the Hilbert transform

In this se
tion, we 
on
entrate on Γ = Z, the dual group of T.

Proposition 6.1. Let ̺ be a linear 
ombination of the identity and the upper triangular

proje
tion of N × N; i.e., there are z, w ∈ C so that ̺i,j = z if i 6 j and ̺i,j = w
if i > j. Then the norm of the S
hur multiplier ̺ on Sψ 
oin
ides with the norm of the

S
hur multiplier ̺ on Sψ(Sψ).

Proof. Let a ∈ Sψm(Sψn ); a may be 
onsidered as an m ×m matrix (aij) whose entries aij
are n× n matri
es, and may be identi�ed with the blo
k matrix

ã =















0 a11 0 a12 · · ·
0 0 0 0 · · ·
0 a21 0 a22 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .















.

In this identi�
ation, IdSψn ⊗M̺(a) is M̺(ã).

The Hilbert transform H is the S
hur multiplier obtained by 
hoosing z = −1 and w = 1.
The upper triangular operators in Sp 
an be seen as a non
ommutative Hp spa
e, and H


orresponds exa
tly to the Hilbert transform in this setting (see [33, 19℄). Using 
lassi
al

results on Hp spa
es, all Hilbert transforms are 
.b. for 1 < p <∞ (see [38, 33, 19℄).

On the 
ir
le T, the 
lassi
al Hilbert transform H 
orresponds to the Fourier multi-

plier given by the sign fun
tion (with the 
onvention sgn(0) = 1), and its norm on Lp is
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cot (π/2max(p, p′)) = csc(π/p) + cot(π/p) for 1 < p < ∞. The story of the 
omputation of

this norm starts with a paper by Israel Gohberg and Naum Krupnik ([10℄) for p a power of 2.
The remaining 
ases were handled by Stylianos Pi
horides ([30℄) and Brian Cole (see [8℄)

independently. The best results in this subje
t are those of Brian Hollenbe
k, Nigel Kalton,

and Igor Verbitsky ([13℄), but they rely on 
omplex variable methods that are not available

in the operator-valued 
ase. When p is a power of 2 (or its 
onjugate), a 
ombination of

arguments of Gohberg and Krupnik ([9℄) with some of László Zsidó ([38℄) yields the following

result.

Theorem 6.2. Let p ∈ ]1,∞[. The norm and the 
omplete norm of the Hilbert transform H

on Sp 
oin
ide with the 
omplete norm of the Hilbert transform H on Lp: if ˝sgn(i, j) =
sgn(i− j) for i, j > 1,

‖ ˝sgn‖M(Sp) = ‖ ˝sgn ‖Mcb(Sp) = ‖ sgn‖Mcb(Lp).

If p is a power of 2, then these norms 
oin
ide with the norm of H on Lp:

‖ ˝sgn‖M(Sp) = ‖ ˝sgn‖Mcb(Sp) = ‖ sgn ‖Mcb(Lp) = ‖ sgn‖M(Lp) = cot(π/2p).

Proof. Let p > 2. The norm of H on Lp is cot(π/2p) and the three other norms are equal by

the transfer theorem 2.7 and the above proposition. We only need to 
ompute the 
omplete

norm of H . Let H̃ = IdSp ⊗H be the Hilbert transform on Lp(tr⊗τ). We shall use Mis
ha

Cotlar's tri
k to go from Lp to L2p
: the equality (sgn i sgn j) + 1 = sgn(i + j)(sgn i + sgn j)

shows that

(H̃f)(H̃g) + fg = H̃
(

(H̃f)g + f(H̃g)
)

. (6.1)

Step 1. The fun
tion sgn is not odd, be
ause of its value in 0; this 
an be �xed in the following
way. Let Λ = 2Z + 1. The norm of H̃ on Lp(tr⊗τ) is equal to its norm on LpΛ(tr⊗τ). In

fa
t, let D be de�ned by Df(z) = zf(z2); D is a 
omplete isometry on Lp with range LpΛ
that 
ommutes with H .

Step 2. Let S be the real subspa
e of LpΛ(tr⊗τ) 
onsisting of fun
tions with values in Sp

so that f(z) is selfadjoint for almost all z ∈ T. Let us apply Vern Paulsen's o�-diagonal

tri
k ([27, Lemma 8.1℄) to show that the norm of H̃ on Lp is equal to its norm on S.
Let f ∈ LpΛ(tr⊗τ). Identifying Sp2(S

p) with Sp,

g(z) =

(

0 f(z)
f(z)∗ 0

)

de�nes an element of S. As the adjoint operation is isometri
 on Sp,

‖g‖S = 21/p‖f‖Lp(tr⊗τ).

Let us now 
onsider

H̃g =

(

0 H̃f

H̃(f∗) 0

)

.

As 0 /∈ Λ by Step 1, the equality sgn(−i) = − sgn i holds for i ∈ Λ: this yields that

H̃(f∗) = −(H̃f)∗. Therefore

‖H̃g‖S = 21/p‖H̃f‖Lp(tr⊗τ).

Step 3. Let up be the norm of H̃ on Lp(tr⊗τ); then u2p 6 up +
√

1 + up. It su�
es to

prove this estimate for f ∈ S, and by approximation we may suppose that f is a �nite linear


ombination of terms ai ⊗ zi + a∗i ⊗ z−i with ai �nite matri
es. Note that H̃f = −(H̃f)∗.
Formula (6.1) with f = g 
ombined with Hölder's inequality yields

‖(H̃f)2‖Lp(tr⊗τ) 6 ‖f2‖Lp(tr⊗τ) + 2up‖f‖L2p(tr⊗τ)‖H̃f‖L2p(tr⊗τ).
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Sin
e f and H̃f take normal values,

‖f2‖Lp(tr⊗τ) = ‖f‖2L2p(tr⊗τ)

‖(H̃f)2‖Lp(tr⊗τ) = ‖H̃f‖2L2p(tr⊗τ).

Therefore, if ‖f‖L2p(tr⊗τ) = 1, ‖H̃f‖L2p(tr⊗τ) must be smaller than the bigger root of t2 −
2upt− 1; that is,

‖H̃f‖2L2p(tr⊗τ) 6 up +
√

u2p + 1 and u2p 6 up +
√

u2p + 1.

Step 4. The multiplier H is an isometry on L2(tr⊗τ), so that u2 = 1 = cot(π/4). As

cot(ϑ/2) = cotϑ+
√
cot2 ϑ+ 1 for ϑ ∈ ]0, π[, we 
on
lude by indu
tion.

Unfortunately, we 
annot deal with other values of p > 2 by this method.

The Riesz proje
tion T is the S
hur multiplier obtained by 
hoosing z = 0 and w = 1 in

Proposition 6.1. It is the proje
tion on the upper triangular part. On the 
ir
le, the 
lassi
al

Riesz proje
tion T , that is the proje
tion onto the analyti
 part, 
orresponds to the Fourier

multiplier given by the indi
ator fun
tion χZ+
of nonnegative integers; its norm on Lp, as


omputed by Hollenbe
k and Verbitsky ([14℄), is csc(π/p). As for the Hilbert transform, we

know that the norm and the 
omplete norm of T on Sp are equal and 
oin
ide with the


omplete norm of T on Lp, but, to the best of our knowledge, there is no simple formula

like (6.1) to go from exponent p to 2p. We only obtained the following 
omputation.

Proposition 6.3. Let p ∈ ]1,∞[. The norm and the 
omplete norm of the Riesz pro-

je
tion T on Sp 
oin
ide with the 
omplete norm of the Riesz proje
tion T on Lp: if

χ̋Z+(i, j) = χZ+(i − j) for i, j > 1,

‖χ̋Z+‖M(Sp) = ‖χ̋Z+‖Mcb(Sp) = ‖χZ+‖Mcb(Lp).

If p = 4, then these norms 
oin
ide with the norm of T on Lp:

‖χ̋Z+‖M(S4) = ‖χ̋Z+‖Mcb(S4) = ‖χZ+‖Mcb(L4) = ‖χZ+‖M(L4) =
√
2.

Proof. We shall 
ompute the norm of T on S4. Let x be a �nite upper triangular matrix

and let y be a �nite stri
tly lower triangular matrix. We have to prove that

√
2‖x+ y‖S4 > ‖x‖S4 .

Let us make the obvious estimates on S2 and use the fa
t that the adjoint operation is

isometri
:

‖T (xx∗)‖S2 = ‖T ((x+ y)x∗)‖S2 6 ‖x+ y‖S4‖x‖S4 ,

and similarly,

‖(Id− T )(xx∗)‖S2 = ‖(Id− T )(x(x + y)∗)‖S2 6 ‖x‖S4‖x+ y‖S4.

As T and Id− T have orthogonal ranges,

‖x‖4S4 = ‖xx∗‖2S2 = ‖(Id− T )(xx∗)‖2S2 + ‖T (xx∗)‖2S2 6 2‖x‖2S4‖x+ y‖2S4.

7 Un
onditional approximating sequen
es

The following de�nition makes sense for general operator spa
es, but we 
hoose to state it

only in our spe
i�
 
ontext.

De�nition 7.1. Let Γ be a dis
rete group and Λ ⊆ Γ . Let X be the redu
ed C∗
-algebra

of Γ or its non
ommutative Lebesgue spa
e Lp for p ∈ [1,∞[.
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(a) A sequen
e (Tk) of operators on XΛ is an approximating sequen
e if ea
h Tk has �nite
rank and Tkx→ x for every x ∈ XΛ. It is a 
omplete approximating sequen
e if the Tk
are uniformly 
.b. If XΛ admits a 
omplete approximating sequen
e, then XΛ enjoys

the 
.b. approximation property.

(b) The di�eren
e sequen
e (∆Tk) of a sequen
e (Tk) is given by ∆T1 = T1 and ∆Tk =
Tk−Tk−1 for k > 2. An approximating sequen
e (Tk) is un
onditional if the operators

n
∑

k=1

εk∆Tk with n > 1 and εk ∈ {−1, 1} (7.1)

are uniformly bounded on XΛ; then XΛ enjoys the un
onditional approximation prop-

erty.

(c) An approximating sequen
e (Tk) is 
ompletely un
onditional if the operators in (7.1)

are uniformly 
.b. on XΛ; then XΛ enjoys the 
omplete un
onditional approximation

property. The minimal uniform bound of these operators is the 
omplete un
onditional


onstant of XΛ.

We may always suppose that a 
omplete approximating sequen
e on CΛ is a Fourier

multiplier sequen
e (see [11, Theorem 2.1℄). We may also do so on LpΛ if L∞
has the so-


alled QWEP (see [15, Theorem 4.4℄). More pre
isely, the following proposition holds.

Proposition 7.2. Let Γ be a dis
rete group and Λ ⊆ Γ . Let X either be its redu
ed C∗
-

algebra or its non
ommutative Lebesgue spa
e Lp, where p ∈ [1,∞[ and L∞
has the QWEP.

If XΛ enjoys the 
ompletely un
onditional approximation property with 
onstant D, then for

every D′ > D there is a 
omplete approximating sequen
e of Fourier multipliers (ϕk) that
realises the 
ompletely un
onditional approximation property with 
onstant D′

: the Fourier

multipliers

∑n
k=1 εk∆ϕk are uniformly 
ompletely bounded by D′

on XΛ.

Let us now des
ribe how to skip blo
ks in an approximating sequen
e in order to 
on-

stru
t an operator that a
ts like the Riesz proje
tion on the sumset of two in�nite sets.

The following tri
k will be used in the indu
tion below (
ompare with the proof of [20,

Theorem 4.2℄):





1 1 0
0 1 0
0 0 0



−





1 1 0
1 1 0
1 1 0



 +





1 1 1
1 1 1
1 1 1



 =





1 1 1
0 1 1
0 0 1



 .

Lemma 7.3. Let Γ be a dis
rete group and Λ ⊆ Γ . Suppose that Λ 
ontains the sumset RC
of two in�nite sets R and C. Let (Tk) be either an approximating sequen
e on LpΛ with

p ∈ [1,∞[, or an approximating sequen
e of Fourier multipliers on CΛ. Let ε > 0. There is

a sequen
e (ri) in R, a sequen
e (ci) in C, and there are indi
es l1 < k2 < l2 < k3 < . . .
su
h that, for every n, the skipped blo
k sum

Un = Tl1 + (Tl2 − Tk2) + · · ·+ (Tln − Tkn) (7.2)

a
ts, up to ε, as the Riesz proje
tion on the sumset {ricj}i,j6n:
{

‖Un(λricj )− λricj‖ < ε if i 6 j 6 n,

‖Un(λricj )‖ < ε if j < i 6 n.

Proof. Let us 
onstru
t the sequen
es and indi
es by indu
tion. If n = 1, let r1 and c1 be

arbitrary; there is l1 su
h that ‖Tl1(λr1c1)− λr1c1‖ < ε. Suppose that r1, . . . , rn, c1, . . . , cn,
l1, . . . , ln, and k2, . . . , kn have been 
onstru
ted. Let δ > 0 be 
hosen later.
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• The operator Un de�ned by Equation (7.2) has �nite rank. If it is a Fourier multiplier,

one 
an 
hoose an element rn+1 ∈ R su
h that Un(λrn+1cj ) = 0 for j 6 n. If it a
ts

on LpΛ with p ∈ [1,∞[, one 
an 
hoose an element rn+1 ∈ R su
h that ‖Un(λrn+1cj)‖ < δ
for j 6 n be
ause (λγ)γ∈Γ is weakly null in Lp.

• There is kn+1 > ln su
h that ‖Tkn+1
(λγ) − λγ‖ < δ for γ ∈ {ricj : 1 6 i 6 n+ 1, 1 6

j 6 n}.

• Again, 
hoose cn+1 ∈ C su
h that ‖(Un − Tkn+1
)(λricn+1

)‖ < δ for i 6 n+ 1.

• Again, 
hoose ln+1 > kn+1 su
h that ‖Tln+1
(λγ) − λγ‖ < δ for γ ∈ {ricj : 1 6 i, j 6

n+ 1}.
Let Un+1 = Un + (Tln+1

− Tkn+1
). If i 6 n+ 1 and j 6 n, then

‖∆Un+1(λricj )‖ 6 ‖Tln+1
(λricj )− λricj‖+ ‖λricj − Tkn+1

(λricj)‖ < 2δ,

so that

‖Un+1(λricj )− λricj‖ < ε+ 2δ if i 6 j 6 n

‖Un+1(λricj )‖ < ε+ 2δ if j < i 6 n

‖Un+1(λrn+1cj )‖ < 3δ if j 6 n.

If i 6 n+ 1, then

‖Un+1(λricn+1
)− λricn+1

‖
6 ‖(Un − Tkn+1

)(λricn+1
)‖+ ‖Tln+1

(λricn+1
)− λricn+1

‖ < 2δ.

This shows that our 
hoi
e of rn+1, cn+1, kn+1 and ln+1 is adequate if δ is small enough.

This 
onstru
tion will provide an obsta
le to the un
onditionality of sumsets.

Theorem 7.4. Let Γ be a dis
rete group and Λ ⊆ Γ . Suppose that Λ 
ontains the sum-

set RC of two in�nite sets R and C.

(a) Let 1 < p < ∞. The 
omplete un
onditional 
onstant of any approximating sequen
e

for Lp is bounded below by the norm of the Riesz proje
tion on Sp, and thus by cscπ/p.

(b) The spa
es L1
Λ and CΛ do not enjoy the 
omplete un
onditional approximation prop-

erty.

(c) If Γ is amenable, then the spa
e CΛ does not enjoy the un
onditional approximation

property.

Proof. Let (Tk) be an approximating sequen
e on LpΛ. By Lemma 7.3, for every ε > 0 and

every n, there are elements r1, . . . , rn ∈ R, c1, . . . , cn ∈ C su
h that the Fourier multiplier ϕ
given by the indi
ator fun
tion of {ricj}i6j is near to a skipped blo
k sum Un of (Tk) in

the sense that ‖Un(λricj ) − ϕricjλricj‖ < ε. But Un is the mean of two operators of the

form (7.1): its 
omplete norm will provide a lower bound for the 
omplete un
onditional


onstant of XΛ. Let us repeat the argument of Lemma 2.4 with x ∈ Spn. As

∥

∥

∥

n
∑

i,j=1

xi,j ei,j

∥

∥

∥

Spn

=
∥

∥

∥

(

n
∑

i=1

ei,i ⊗ λri

)(

n
∑

i,j=1

xi,j ei,j ⊗ λǫ

)(

n
∑

j=1

ej,j ⊗ λcj

)∥

∥

∥

Lp(tr⊗τ)

=
∥

∥

∥

n
∑

i=1

xi,j ei,j ⊗ λricj

∥

∥

∥

Lp(tr⊗τ)
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and

∥

∥

∥

n
∑

i=1

xi,j ei,j ⊗ (Un(λricj )− ϕricjλricj )
∥

∥

∥

Lp(tr⊗τ)
< n2ε‖x‖Spn ,

the 
omplete norm of Un is nearly bounded below by the norm of the Riesz proje
tion on Spn:

∥

∥

∥

n
∑

i=1

xi,j ei,j ⊗ Un(λricj )
∥

∥

∥

Lp(tr⊗τ)
>

∥

∥

∥

∑

i6j

xi,j ei,j ⊗ λricj

∥

∥

∥

Lp(tr⊗τ)
− n2ε‖x‖Spn

= ‖T (x)‖Spn − n2ε‖x‖Spn .

This proves (a) as well as the �rst assertion in (b), be
ause the Riesz proje
tion is unbounded
on S1. Let (Tk) be an approximating sequen
e on CΛ; by Lemma 7.2, we may suppose

that (Tk) is a sequen
e of Fourier multipliers. Thus the se
ond assertion in (b) follows

from Lemma 7.3 
ombined with the pre
eding argument (where Spn is repla
ed by S∞n and

Lp(tr⊗τ) by S∞n ⊗ C) and the unboundedness of the Riesz proje
tion on S∞. For (c), note
that the Fourier multipliers Tk are automati
ally 
.b. on CΛ if Γ is amenable (proof of

Theorem 2.7 (c)).

Theorem 7.4 (b) was originally devised to prove that the Hardy spa
e H1
, 
orresponding

to the 
ase Λ = N ⊆ Z and p = 1, admits no 
ompletely un
onditional basis (see [34,

35℄). Theorem 7.4 (c) both generalises the fa
t that a sumset 
annot be a Sidon set (see

[18, �� 1.4, 6.6℄ for two proofs and histori
al remarks, or [17, Proposition IV.7℄) and Daniel

Li's result [16, Corollary 13℄ that the spa
e CΛ does not have the �metri
� un
onditional

approximation property if Γ is abelian and Λ 
ontains a sumset. Li ([16, Theorem 10℄) also


onstru
ted a set Λ ⊆ Z su
h that CΛ has this property, while Λ 
ontains the sumset of

arbitrarily large sets. This theorem also provides a new proof that the dis
 algebra has no

un
onditional basis and answers [21, Question 6.1.6℄.

Example 7.5. Neither the span of produ
ts {rirj} of two Radema
her fun
tions in the spa
e of


ontinuous fun
tions on {−1, 1}∞ nor the span of produ
ts {sisj} of two Steinhaus fun
tions
in the spa
e of 
ontinuous fun
tions on T∞

has an un
onditional basis.

8 Relative S
hur multipliers of rank one

Let ̺ be an elementary S
hur multiplier on S∞, that is,

̺ = x⊗ y = (xryc)(r,c)∈R×C .

Then its norm is supr∈R|xr | supc∈C |yc|. How is this norm a�e
ted if ̺ is only partially

spe
i�ed, that is, if the a
tion of ̺ is restri
ted to matri
es with a given support?

Theorem 8.1. Let I ⊆ R × C and 
onsider (xr)r∈R and (yc)c∈C . The relative S
hur

multiplier on S∞I given by (xryc)(r,c)∈I has norm sup(r,c)∈I |xryc|.
Note that the norm of the S
hur multiplier (xryc)(r,c)∈I is bounded by supr∈R|xr| ×

supc∈C |yc| be
ause the matrix (xryc)(r,c)∈R×C is a trivial extension of (xryc)(r,c)∈I ; the

proof below provides a 
onstru
tive nontrivial extension of this S
hur multiplier that is a


omposition of ampliations of the S
hur multiplier in the following lemma.

Lemma 8.2. The S
hur multiplier

(

z w
w z

)

has norm max(|z|, |w|) on S∞2 .

Proof. This follows from the de
omposition

(

z w
w z

)

=
|z|+ |w|

2

(

t̄u
tū

)

⊗
(

tu tu
)

+
|z| − |w|

2

(

t̄u
−tū

)

⊗
(

tu −tu
)

,

where t, u ∈ T are 
hosen so that z = |z|t2 and w = |w|u2.
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Proof of Theorem 8.1. We may suppose that C is the �nite set {1, . . . ,m} and that R is the

�nite set {1, . . . , n}, that ea
h yc is nonzero, and that ea
h row in R 
ontains an element

of I. We may also suppose that (|xr|)r∈R and (|yc|)c∈C are nonin
reasing sequen
es. For

ea
h r ∈ R let cr be the least 
olumn index of elements of I in or above row r; in other

words,

cr = min
r′6r

min{c : (r′, c) ∈ I}.

The sequen
e (cr)r∈R is nonin
reasing. Let us de�ne its inverse (rc)c∈C in the sense that

rc 6 r ⇔ cr 6 c. For ea
h c ∈ C, let rc = min{r : cr 6 c}. Given r, let r′ 6 r be su
h that

(r′, cr) ∈ I; then |xrycr | 6 |xr′ycr |, so that supr∈R|xrycr | 6 sup(r,c)∈I |xryc| and the rank 1

S
hur multiplier

̺0 = (xrycr)(r,c)∈R×C

with pairwise equal 
olumns is bounded by sup(r,c)∈I |xryc| on S∞n . We will now �
orre
t� ̺0
without in
reasing its norm so as to make it an extension of (xryc)(r,c)∈I . Let r ∈ R and c′ >
cr; then

xryc′ = xrycr
ycr+1

ycr
· · · yc′

yc′−1
= xrycr

∏

cr6c6c′−1

yc+1

yc

= xrycr
∏

r>rc
c′>c+1

yc+1

yc
.

This shows that it su�
es to 
ompose the S
hur multiplier ̺0 with the m− 1 rank 2 S
hur

multipliers with blo
k matrix

̺c =



















1 ··· c c+1 ··· m

1

...

rc−1

(

yc+1

yc

)

1

rc
...

n

1
yc+1

yc



















,

ea
h of whi
h has norm 1 on S∞n by Lemma 8.2.

Remark 8.3. We learned after submitting this arti
le that Timur Oikhberg proved Theo-

rem 8.1 independently and gave some appli
ations to it; see [24℄.

Remark 8.4. As an illustration, let C = R = {1, . . . , n} and I = {(r, c) : r > c}, and let ai be
an in
reasing sequen
e of positive numbers. Take xr = ar and yc = 1/ac. Then the relative

S
hur multiplier (ar/ac)r6c has norm 1. The above proof a
tually 
onstru
ts the norm 1

extension (min(ar/ac, ac/ar))(r,c). If we put ai = exi , we re
over that (e−|xr−xc|)(r,c) is

positive de�nite, that is, |·| is a 
onditionally negative fun
tion on R.
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