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Abstrat

We inspet the relationship between relative Fourier multipliers on nonommutative

Lebesgue-Orliz spaes of a disrete group Γ and relative Toeplitz-Shur multipliers

on Shatten-von-Neumann-Orliz lasses. Four appliations are given: launary sets,

unonditional Shauder bases for the subspae of a Lebesgue spae determined by a

given spetrum Λ ⊆ Γ , the norm of the Hilbert transform and the Riesz projetion on

Shatten-von-Neumann lasses with exponent a power of 2, and the norm of Toeplitz

Shur multipliers on Shatten-von-Neumann lasses with exponent less than 1.

1 Introdution

Let Λ be a subset of Z and let x be a bounded measurable funtion on the irle T with

Fourier spetrum in Λ: we write x ∈ L∞
Λ , x ∼ ∑

k∈Λ xkz
k
. The matrix of the assoiated

operator y 7→ xy on L2
with respet to its trigonometri basis is the Toeplitz matrix

(xr−c)(r,c)∈Z×Z =
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with support in Λ̋ = {(r, c) : r − c ∈ Λ}.
This is a point of departure for the interplay of harmoni analysis and operator theory.

In the general ase of a disrete group Γ , the ounterpart to a bounded measurable funtion

is de�ned as a bounded operator on ℓ2Γ whose matrix has the form (xrc−1)(r,c)∈Γ×Γ for

some sequene (xγ)γ∈Γ . This will be the framework of the body of this artile, while the

introdution stiks to the ase Γ = Z.

We are onerned with two kinds of multipliers. A sequene ϕ = (ϕk)k∈Λ de�nes

• the relative Fourier multipliation operator on trigonometri polynomials with spe-

trum in Λ by

∑

k∈Λ

xkz
k 7→

∑

k∈Λ

ϕkxkz
k; (1.1)

• the relative Shur multipliation operator on �nite matries with support in Λ̋ by

(xr,c)(r,c)∈Z×Z 7→ (ϕ̋r,cxr,c)(r,c)∈Z×Z, (1.2)

where ϕ̋r,c = ϕr−c.
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Marek Bo»ejko and Gero Fendler proved that these two multipliers have the same norm.

The operator (1.1) is nothing but the restrition of (1.2) to Toeplitz matries. They noted

that it is automatially ompletely bounded: it has the same norm when ating on trigono-

metri series with operator oe�ients xk, and this permits to remove this restrition. Shur

multipliation is also automatially ompletely bounded.

A part of this observation has been extended by Gilles Pisier to multipliers ating on a

translation invariant Lebesgue spae LpΛ and on the subspae Sp
Λ̋
of elements of a Shatten-

von-Neumann lass supported by Λ̋, respetively; it yields that the omplete norm of a

relative Shur multiplier (1.2) remains bounded by the omplete norm of the relative Fourier

multiplier (1.1).

But LpΛ is not a subspae of Sp
Λ̋
, so a relative Fourier multiplier may not be viewed

anymore as the restrition of a relative Shur multiplier to Toeplitz matries. We point out

that this di�ulty may be overome by using Szeg®'s limit theorem: a bounded measurable

real funtion on T is the weak

∗
limit of the normalised ounting measure of eigenvalues of

�nite trunates of its Toeplitz matrix. This method also applies to Orliz norms.

Theorem 1.1. Let ψ : R+ → R+
be a ontinuous nondereasing funtion vanishing only

at 0. The norm of the relative Fourier multipliation operator (1.1) on the Lebesgue-Orliz

spae LψΛ is bounded by the norm of the relative Shur multipliation operator (1.2) on the

Shatten-von-Neumann-Orliz lass Sψ
Λ̋
.

In order to deal with omplete norms, we dedue a blok matrix variant of Szeg®'s

limit theorem in the style of Erik Bédos ([2℄), Theorem 2.6. Note that other types of

approximation are also available, as the ompletely positive approximation property and

Reiter sequenes ombined with omplex interpolation. They are studied in Setion 3 in

terms of loal embeddings of Lp into Sp. They are more anonial than Szeg®'s limit theorem,

but give no aess to Orliz norms.

Theorem 1.2. Let ψ : R+ → R+
be a ontinuous nondereasing funtion vanishing only

at 0. The norm of the following operators is equal:

• the relative Fourier multipliation operator (1.1) on the Lebesgue-Orliz spae LψΛ(S
ψ)

of Sψ-valued trigonometri series with spetrum in Λ;

• the relative Shur multipliation operator (1.2) on the Shatten-von-Neumann-Orliz

lass Sψ
Λ̋
(Sψ) of Sψ-valued matries with support in Λ̋.

See Theorems 2.1 and 2.7 for the preise statement in the general ase of an amenable

group Γ .
An appliation of this theorem to the lass of all unimodular Fourier multipliers yields

a transfer of launary subsets into launary matrix patterns. Call Λ unonditional in Lp

if (zk)k∈Λ is an unonditional basis of LpΛ, and all Λ̋ unonditional in Sp if the sequene

(eq)q∈Λ̋ of elementary matries is an unonditional basis of Sp
Λ̋
. These properties are also

known as Λ(p) if p > 2 (Λ(2) if p < 2) and σ(p), respetively; they have natural �omplete�

ounterparts that are also known as Λ(p)cb if p > 2 (K(p)cb if p 6 2) and σ(p)cb, respetively.
(See De�nitions 4.1 and 4.2).

Corollary 1.3. Let 1 6 p <∞. If Λ̋ is unonditional in Sp, then Λ is unonditional in Lp.
Λ̋ is ompletely unonditional in Sp if and only if Λ is ompletely unonditional in Lp.

See Proposition 4.3 for the preise statement in the general ase of a disrete group Γ .
The two most prominent multipliers are the Riesz projetion and the Hilbert transform.

The �rst onsists in letting ϕ be the indiator funtion of nonnegative integers and transfers

into the upper triangular trunation of matries. The seond orresponds to the sign funtion

and transfers into the Hilbert matrix transform. We obtain the following partial results.
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Theorem 1.4. The norm of the matrix Riesz projetion and of the matrix Hilbert transform

on Sψ(Sψ) oinide with their norm on Sψ.

• If p is a power of 2, then the norm of the matrix Hilbert transform on Sp is cot(π/2p).

• The norm of the matrix Riesz projetion on S4 is

√
2.

The transfer tehnique lends itself naturally to the ase where Λ ontains a sumset

R + C: if subsets R′
and C′

are extrated so that the r + c with r ∈ R′
and c ∈ C′

are

pairwise distint, they may play the role of rows and olumns. Here are the onsequenes

of the onditionality of the sequene of elementary matries er,c in Sp for p 6= 2 and of the

unboundedness of the Riesz transform on S1 and S∞, respetively.

Theorem 1.5. If (zk)k∈Λ is a ompletely unonditional basis of LpΛ with p 6= 2, then Λ
does not ontain sumsets R+ C of arbitrarily large sets. If either

• the spae L1
Λ admits some ompletely unonditional approximating sequene, or

• the spae CΛ of ontinuous funtions with spetrum in Λ admits some unonditional

approximating sequene,

then Λ does not ontain the sumset R+ C of two in�nite sets.

The proof of the seond part of this theorem onsists in onstruting in�nite subsets

R′
and C′

and skipped blok sums

∑

(Tkj+1
− Tkj ) of a given approximating sequene that

at like the projetion on the �upper triangular� part of R′ + C′
. See Proposition 4.8 and

Theorem 7.4 for the preise statement in the general ase of a disrete group Γ .
In the ase of quasi-normed Shatten-von-Neumann lasses Sp with p < 1, the transfer

tehnique yields a new proof for the following result of Alexey Alexandrov and Vladimir

Peller.

Theorem 1.6. Let 0 < p < 1. The Fourier multiplier ϕ is ontrative on Lp or on Lp(Sp)
if and only if the Shur multiplier ϕ̋ is ontrative on Sp or on Sp(Sp) if and only if

the sequene ϕ is the Fourier transform of an atomi measure of the form

∑

agδg on T

with

∑|ag|p 6 1.

The emphasis put on relative Shur multipliers motivates the natural question of how

the norm of an elementary Shur multiplier, that is, a rank 1 matrix (̺r,c) = (xryc), gets
a�eted when the ation of ̺ is restrited to matries with a given support. The surprising

answer is the following theorem.

Theorem 1.7. Let I ⊆ R × C and onsider (xr)r∈R and (yc)c∈C . The relative Shur

multiplier on S∞I given by (xryc)(r,c)∈I has norm sup(r,c)∈I |xryc|.

Let us �nally desribe the ontent of this artile. Setion 2 develops transfer tehniques

for Fourier and Shur multipliers provided by a blok matrix Szeg® limit theorem. This

theorem provides loal embeddings of Lψ into Sψ . Setion 3 shows how interpolation may

be used to de�ne suh embeddings for the sale of Lp spaes. Setion 4 is devoted to the

transfer of launary sets into launary matrix patterns; the unonditional onstant of a set

Λ is related to the size of the sumsets it ontains. Setion 5 deals with Toeplitz Shur

multipliers for p < 1 and omments on the ase p > 1. The Riesz projetion and the Hilbert

transform are studied in Setion 6. In Setion 7, the presene of sumsets in a spetrum Λ
is shown to be an obstrution for the existene of ompletely unonditional bases for LpΛ.
The last setion provides a norm-preserving extension for partially spei�ed rank 1 Shur

multipliers.

Notation and terminology. Let T = {z ∈ C : |z| = 1} be the irle.

Given an index set C and c ∈ C, ec is the sequene de�ned on C as the indiator

funtion χ{c} of the singleton {c}, so that (ec)c∈C is the anonial Shauder basis of the
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Hilbert spae of square summable sequenes indexed by C, denoted by ℓ2C . We will use the

notation ℓ2n = ℓ2{1,2,...,n} and ℓ2 = ℓ2
N
.

Given a produt set I = R × C and q = (r, c), the indiator funtion eq = er,c is the
elementary matrix identi�ed with the linear operator from ℓ2C to ℓ2R that maps ec to er and
all other basis vetors to 0. The matrix oe�ient at oordinate q of a linear operator x
from ℓ2C to ℓ2R is xq = tr e∗qx, and its matrix representation is (xq)q∈R×C =

∑

q∈R×C xq eq.
The support or pattern of x is {q ∈ R× C : xq 6= 0}.

The spae of all bounded operators from ℓ2C to ℓ2R is denoted by B(ℓ2C , ℓ
2
R), and its

subspae of ompat operators is denoted by S∞.

Let ψ : R+ → R+
be a ontinuous nondereasing funtion vanishing only at 0. The

Shatten-von-Neumann-Orliz lass Sψ is the spae of those ompat operators x from ℓ2C
to ℓ2R suh that trψ(|x|/a) < ∞ for some a > 0. If ψ is onvex, then Sψ is a Banah spae

for the norm given by ‖x‖Sψ = inf{a > 0 : trψ(|x|/a) 6 1}. Otherwise, Sψ is a Fréhet

spae for the F-norm given by ‖x‖Sψ = inf{a > 0 : trψ(|x|/a) 6 a} (see [26, Chapter 3℄).

This spae may also be onstruted as the nonommutative Lebesgue-Orliz spae Lψ(tr)
assoiated with a orner of the von Neumann algebra B(ℓ2C ⊕ ℓ2R) endowed with the normal,

faithful, semi�nite trae tr. If ψ is the power funtion t 7→ tp, this spae is denoted Sp; if

p > 1, then ‖x‖Sp = (tr |x|p)1/p; if p < 1, then ‖x‖Sp = (tr |x|p)1/(1+p).
If #C = #R = n, then B(ℓ2C , ℓ

2
R) identi�es with the spae of n×n matries denoted S∞n ,

and we write Sψn for Sψ. Let (Rn × Cn) be a sequene of �nite sets suh that eah element

of R×C eventually is in Rn×Cn. Then the sequene of operators Pn : x 7→ ∑

q∈Rn×Cn
xq eq

tends pointwise to the identity on Sψ .
For I ⊆ R×C, we de�ne the spae SψI as the losed subspae of Sψ spanned by (eq)q∈I ;

this oinides with the subspae of those x ∈ Sψ whose support is a subset of I.
A relative Shur multiplier on SψI is a sequene ̺ = (̺q)q∈I ∈ CI suh that the assoiated

Shur multipliation operator M̺ de�ned by eq 7→ ̺qeq for q ∈ I is bounded on SψI . The

norm ‖̺‖M(Sψ
I
) of ̺ is de�ned as the norm of M̺. This norm is the supremum of the norm

of its restritions to �nite retangle sets R′ × C′
. We used [31, 32℄ as a referene.

Let Γ be a disrete group with identity ǫ. The redued C∗
-algebra of Γ is the losed

subspae spanned by the left translations λγ (the linear operators de�ned on ℓ2Γ by λγ eβ =
eγβ) in B(ℓ2Γ ); we denote it by C, set in roman type. The von Neumann algebra of Γ
is its weak

∗
losure, endowed with the normal, faithful, normalised �nite trae τ de�ned

by τ(x) = xǫ,ǫ; we denote it by L∞
. Let ψ : R+ → R+

be a ontinuous nondereasing funtion

vanishing only at 0. We de�ne the nonommutative Lebesgue-Orliz spae Lψ of Γ as the

ompletion of L∞
with respet to the norm given by ‖x‖Lψ = inf{a > 0 : τ(ψ(|x|/a)) 6 1} if

ψ is onvex, and with respet to the F-norm given by ‖x‖Lψ = inf{a > 0 : τ(ψ(|x|/a)) 6 a}
otherwise. If ψ is the power funtion t 7→ tp, this spae is denoted Lp; if p > 1, then

‖x‖Lp = τ(|x|p)1/p; if p < 1, then ‖x‖Lp = τ(|x|p)1/(1+p). The Fourier oe�ient of x at γ
is xγ = τ(λ∗γx) = xγ,ǫ and its Fourier series is

∑

γ∈Γ xγλγ . The spetrum of an element x

is {γ ∈ Γ : xγ 6= 0}. Let X be the C∗
-algebra C or the spae Lψ and let Λ ⊆ Γ ; then we

de�ne XΛ as the losed subspae of X spanned by the λγ with γ ∈ Λ. We skip the general

question of when this oinides with the subspae of those x ∈ X whose spetrum is a subset

of Λ, but note that this is the ase if Γ is an amenable group (or if Γ has the AP and L∞
has

the QWEP by [15, Theorem 4.4℄) and ψ is the power funtion t 7→ tp. Note also that our

de�nition of XΛ makes it a subspae of the heart of X : if x ∈ XΛ, then τ(ψ(|x|/a)) is �nite
for all a > 0.

A relative Fourier multiplier on XΛ is a sequene ϕ = (ϕγ)γ∈Λ ∈ CΛ suh that the

assoiated Fourier multipliation operator Mϕ de�ned by λγ 7→ ϕγλγ for γ ∈ Λ is bounded

on XΛ. The norm ‖ϕ‖M(XΛ) of ϕ is de�ned as the norm of Mϕ. Fourier multipliers on the

whole of the C∗
-algebra C are also alled multipliers of the Fourier algebra A(Γ ) (whih may

be identi�ed with L1
); they form the set M(A(Γ )).

The spae Sψ(Sψ) is the spae of those ompat operators x from ℓ2 ⊗ ℓ2C to ℓ2⊗ ℓ2R suh

that ‖x‖Sψ(Sψ) = inf{a : tr⊗ trψ(|x|/a) 6 1}: it is the nonommutative Lebesgue-Orliz
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spae Lψ(tr⊗ tr) assoiated with a orner of the von Neumann algebra B(ℓ2)⊗ B(ℓ2C ⊕ ℓ2R).
One may think of Sψ(Sψ) as the Sψ-valued Shatten-von-Neumann lass; we de�ne the matrix

oe�ient of x at q by xq = (IdSψ ⊗ tr)
(

(Idℓ2 ⊗ e∗q)x
)

∈ Sψ and its matrix representation by

∑

q∈R×C xq ⊗ eq. The support of x and the subspae SψI (S
ψ) are de�ned in the same way

as SψI .
Similarly, the spae Lψ(tr⊗τ) is the nonommutative Lebesgue-Orliz spae assoiated

with the von Neumann algebra B(ℓ2) ⊗ L∞ = L∞(tr⊗τ). One may think of Lψ(tr⊗τ) as
the Sψ-valued nonommutative Lebesgue spae; we de�ne the Fourier oe�ient of x at γ
by xγ = (IdSψ ⊗ τ)

(

(Idℓ2 ⊗λ∗γ)x
)

∈ Sψ and its Fourier series by

∑

γ∈Γ xγ ⊗λγ ; the spetrum
of x is de�ned aordingly. The subspae LψΛ(tr⊗τ) is the losed subspae of Lψ(tr⊗τ)
spanned by the x⊗ λγ with x ∈ Sψ and γ ∈ Λ.

An operator T on SψI is bounded on SψI (S
ψ) if the linear operator IdSψ ⊗ T de�ned

by x ⊗ y 7→ x ⊗ T (y) for x ∈ Sψ and y in SψI on �nite tensors extends to a bounded

operator IdSψ ⊗ T on SψI (S
ψ). The norm of a Shur multiplier ̺ on SψI (S

ψ) is de�ned as the

norm of IdSψ ⊗M̺. Similar de�nitions hold for an operator T on LψΛ; the norm of a Fourier

multiplier ϕ on LψΛ(tr⊗τ) is the norm of IdSψ ⊗Mϕ on LψΛ(tr⊗τ).
Let ψ be the power funtion t 7→ tp with p > 1; the norms on Sp(Sp) and Lp(tr⊗τ)

desribe the anonial operator spae struture on Sp and Lp, respetively (see [31, Corol-

lary 1.4℄); we should rather use the notation Sp[Sp] and Sp[Lp]. This explains the following
terminology. An operator T on SpI is ompletely bounded (.b.) if IdSp ⊗ T is bounded

on SpI(S
p); the norm of IdSp ⊗T is the omplete norm of T (ompare [31, Lemma 1.7℄). The

omplete norm ‖̺‖Mcb(S
p

I
) of a Shur multiplier ̺ is de�ned as the omplete norm of M̺.

Note that the omplete norm of a Shur multiplier ̺ on S∞I is equal to its norm ([28, Theo-

rem 3.2℄): ‖̺‖Mcb(S∞

I
) = ‖̺‖M(S∞

I
). The omplete norm ‖ϕ‖Mcb(L

p

Λ
) of a Fourier multiplier ϕ

is de�ned as the omplete norm of Mϕ. The omplete norm of an operator T on CΛ is the

norm of IdS∞ ⊗T on the subspae of S∞⊗C spanned by the x⊗λγ with x ∈ S∞ and γ ∈ Λ.
In the ase Λ = Γ , ϕ is also alled a .b. multiplier of the Fourier algebra A(Γ ) and one

writes ϕ ∈ Mcb(A(Γ )). If Γ is amenable, the omplete norm of a Fourier multiplier ϕ on CΛ
is equal to its norm: ‖ϕ‖Mcb(CΛ) = ‖ϕ‖M(CΛ) (this follows from [7, Corollary 1.8℄ as shown

by the proof of Theorem 2.7 (c)).
An element whose norm is at most 1 is ontrative, and if its omplete norm is at most 1,

it is ompletely ontrative.

If Γ is abelian, let G be its dual group and endow it with its unique normalised Haar

measure m. Then the Fourier transform identi�es the C∗
-algebra C as the spae of on-

tinuous funtions on G, L∞
as the spae of lasses of bounded measurable funtions

on (G,m), Lψ as the Lebesgue-Orliz spae of lasses of ψ-integrable funtions on (G,m),
τ(x) as

∫

G
x(g) dm(g), Lψ(tr⊗τ) as the Sψ-valued Lebesgue-Orliz spae Lψ(Sψ) and xγ

as x̂(γ).

2 Transfer between Fourier and Shur multipliers

Let Λ be a subset of a disrete group Γ and let ϕ be a relative Fourier multiplier on CΛ,
the losed subspae spanned by (λγ)γ∈Λ in the redued C∗

-algebra of Γ . Let x ∈ CΛ;
the matrix of x is onstant down the diagonals in the sense that for every (r, c) ∈ Γ × Γ ,
xr,c = xrc−1,ǫ = xrc−1

. We say that x is a Toeplitz operator on ℓ2Γ . Furthermore, the matrix

of the Fourier produt Mϕx of ϕ with x is given by (Mϕx)r,c = ϕrc−1xr,c. This equality

shows that if we set Λ̋ = {(r, c) ∈ Γ × Γ : rc−1 ∈ Λ} and ϕ̋r,c = ϕrc−1
, then Mϕx is the

Shur produt Mϕ̋x of ϕ̋ with x. We have transferred the Fourier multiplier ϕ into the Shur

multiplier ϕ̋. This proves at one that the norm of the Fourier multiplier ϕ on CΛ is the

norm of the Shur multiplier ϕ̋ on the subspae of Toeplitz elements of B(ℓ2Γ ) with support

in Λ̋, and that the same holds for omplete norms.
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We shall now provide the means to generalise this identi�ation to the setting of Lebesgue-

Orliz spaes Lψ. We shall bypass the main obstale, that Lψ may not be onsidered as a

subspae of Sψ , by the Szeg® limit theorem as stated by Erik Bédos ([2℄).

Consider a disrete amenable group Γ ; it admits a Følner averaging net of sets (Γι), that
is,

• eah Γι is a �nite subset of Γ ;

• #(γΓι∆Γι) = o(#Γι) for eah γ ∈ Γ .

Eah set Γι orresponds to the orthogonal projetion pι of ℓ
2
Γ onto its (#Γι)-dimensional

subspae of sequenes supported by Γι. The trunate of a selfadjoint operator y ∈ B(ℓ2Γ )
with respet to Γι is yι = pιyp

∗
ι ; it has #Γι eigenvalues αj , ounted with multipliities, and

its normalised ounting measure of eigenvalues is

µι =
1

#Γι

#Γι
∑

j=1

δαj .

If y is a Toeplitz operator, that is, if y ∈ L∞
, Erik Bédos ([2, Theorem 10℄) proved that (µι)

onverges weak

∗
to the spetral measure of y with respet to τ , whih is the unique Borel

probability measure µ on R suh that

τ(f(y)) =

∫

R

f(α)dµ(α)

for every ontinuous funtion f on R that tends to zero at in�nity. If Γ is abelian, then

y may be identi�ed as the lass of a real-valued bounded measurable funtion on the group G
dual to Γ and µ is the distribution of y.

Let us now state and prove the Lψ version of the identi�ation desribed at the beginning

of this setion.

Theorem 2.1. Let Γ be a disrete amenable group and let ψ : R+ → R+
be a ontinuous

nondereasing funtion vanishing only at 0. Let Λ ⊆ Γ and ϕ ∈ C
Λ
. Consider the assoiated

Toeplitz set Λ̋ = {(r, c) ∈ Γ ×Γ : rc−1 ∈ Λ} and the Toeplitz matrix de�ned by ϕ̋r,c = ϕrc−1
.

The norm of the relative Fourier multiplier ϕ on LψΛ is bounded by the norm of the relative

Shur multiplier ϕ̋ on Sψ
Λ̋
.

Proof. A Toeplitz matrix has the form (xrc−1)(r,c)∈Λ̋. Our de�nition of the spae LψΛ (in

the setion on Notation and terminology) ensures that we may suppose that only a �nite

number of the xγ are nonzero for the omputation of the norm of ϕ. Then (xrc−1)(r,c)∈Λ̋ is

the matrix of the operator x =
∑

γ∈Λ xγλγ for the anonial basis of ℓ2Γ .

Let y = x∗x and let ψ̃ be a ontinuous funtion with ompat support suh that ψ̃(t) =
ψ(t) on [0, ‖y‖]. By Szeg®'s limit theorem,

1

#Γι
trψ(yι) =

1

#Γι
tr ψ̃(yι) → τ(ψ̃(y)) = τ(ψ(y)).

We have yι = (xp∗ι )
∗
(xp∗ι ); let us desribe how ϕ̋ ats on xp∗ι . Shur multipliation with ϕ̋

transforms the matrix of xp∗ι , that is, the trunated Toeplitz matrix (xrc−1)(r,c)∈Λ̋∩Γ×Γι
,

into the matrix (ϕrc−1xrc−1)(r,c)∈Λ̋∩Γ×Γι
so that it transforms xp∗ι into (Mϕx)p

∗
ι .

Remark 2.2. In the ase of a �nite abelian group, no limit theorem is needed. This ase was

onsidered in [22, Proposition 2.5 (b)℄; ompare with [29, Chapter 6, Lemma 3.8℄.

Remark 2.3. Our tehnique proves in fat that the norm of a Fourier multiplier is the upper

limit of the norm of the orresponding relative Shur multipliers on subspaes of trunated

Toeplitz matries. We ignore whether or not it is atually their supremum.

6



Remark 5.2 illustrates that the two norms in Theorem 2.1 are di�erent in general. This

is not so in the Sψ-valued ase beause of the following argument. It has been used (�rst

in [5℄, see [6, Proposition D.6℄) to show that the omplete norm of the Fourier multiplier ϕ
on CΛ bounds the omplete norm of the Shur multiplier ϕ̋ on S∞

Λ̋
, so that we have in full

generality ‖ϕ‖Mcb(CΛ) = ‖ϕ̋‖Mcb(S∞

Λ̋
).

Lemma 2.4. Let Γ be a disrete group and let R and C be subsets of Γ . With Λ ⊆ Γ

assoiate Λ̋ = {(r, c) ∈ R × C : rc−1 ∈ Λ}; given ϕ ∈ CΛ, de�ne ϕ̋ ∈ CΛ̋ by ϕ̋r,c = ϕrc−1
.

Let ψ : R+ → R+
be a ontinuous nondereasing funtion vanishing only at 0. The norm

of the relative Shur multiplier ϕ̋ on Sψ
Λ̋
(Sψ) is bounded by the norm of the relative Fourier

multiplier ϕ on LψΛ(tr⊗τ).

Proof. We adapt the argument in [31, Lemma 8.1.4℄. Let xq ∈ Sψ, of whih only a �nite

number are nonzero. The spae Lψ(tr⊗ tr⊗τ) is a left and right L∞(tr⊗ tr⊗τ)-module,

and

∑

γ∈Γ eγγ ⊗ λγ is a unitary in L∞(tr⊗τ) so that

∥

∥

∥

∑

q∈Λ̋

xq ⊗ eq

∥

∥

∥

Sψ
Λ̋
(Sψ)

=
∥

∥

∥

(

Id⊗
∑

r∈R

er,r ⊗ λr

)(

∑

q∈Λ̋

xq ⊗ eq ⊗ λǫ

)(

Id⊗
∑

c∈C

ec,c ⊗ λ∗c

)∥

∥

∥

Lψ(tr⊗ tr⊗τ)

=

∥

∥

∥

∥

∑

(r,c)∈Λ̋

xr,c ⊗ er,c ⊗ λrc−1

∥

∥

∥

∥

Lψ(tr⊗ tr⊗τ)

=

∥

∥

∥

∥

∑

γ∈Λ

(

∑

rc−1=γ

xr,c ⊗ er,c

)

⊗ λγ

∥

∥

∥

∥

LψΛ(tr⊗ tr⊗τ)

.

This yields an isometri embedding of Sψ
Λ̋
(Sψ) in LψΛ(tr⊗ tr⊗τ). As Sψ(Sψ) is the Shatten-

von-Neumann-Orliz lass for the Hilbert spae ℓ2 ⊗ ℓ2Γ , whih may be identi�ed with ℓ2,

∥

∥

∥

∑

q∈Λ̋

xq ⊗ ϕ̋q eq

∥

∥

∥

Sψ
Λ̋
(Sψ)

=

∥

∥

∥

∥

∑

γ∈Λ

(

∑

rc−1=γ

xr,c ⊗ er,c

)

⊗ ϕγλγ

∥

∥

∥

∥

LψΛ(tr⊗ tr⊗τ)

6 ‖IdSψ ⊗Mϕ‖
∥

∥

∥

∑

q∈Λ̋

xq ⊗ eq

∥

∥

∥

Sψ
Λ̋
(Sψ)

.

Remark 2.5. This proof also shows the following transfer: let (ri) and (cj) be sequenes

in Γ , onsider Λ̆ = {(i, j) ∈ N× N : ricj ∈ Λ} and de�ne ϕ̆ ∈ CΛ̆ by ϕ̆(i, j) = ϕ(ricj). Then

the norm of the relative Shur multiplier ϕ̆ on Sψ
Λ̆
(Sψ) is bounded by the norm of the relative

Fourier multiplier IdSψ ⊗Mϕ on LψΛ(tr⊗τ) (ompare with [32, Theorem 6.4℄). In partiular,

if the ricj are pairwise distint, this permits us to transfer every Shur multiplier, not just

the Toeplitz ones. See [22, Setion 11℄ for appliations of this transfer.

We shall now prove that the two norms in this lemma are in fat equal. As we want

to ompute norms of multipliers on Sψ-valued spaes, we shall generalise the Szeg® limit

theorem to the blok matrix ase, whih was not onsidered in [2℄. This is the analogue of

the salar ase for selfadjoint elements y ∈ S∞n ⊗ L∞
, whose S∞n -valued spetral measure µ

is de�ned by

∫

R

f(α)dµ(α) = IdS∞

n
⊗ τ(f(y))

for every ontinuous funtion f on R that tends to zero at in�nity.
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The orthogonal projetion p̃ι = Idℓ2n ⊗ pι de�nes the trunate yι = p̃ιyp̃
∗
ι ∈ S∞n ⊗ B(ℓ2Γι),

and the S∞n -valued normalised ounting measure of eigenvalues µι by
∫

R

f(α)dµι(α) = IdS∞

n
⊗ tr

#Γι
(f(yι))

for every ontinuous funtion f on R that tends to zero at in�nity.

Theorem 2.6 (Matrix Szeg® limit theorem). Let Γ be a disrete amenable group and let

(Γι) be a Følner averaging net for Γ . Let y be a selfadjoint element of S∞n ⊗ L∞
. The

net (µι) of S∞n -valued normalised ounting measures of eigenvalues of the trunates of y
with respet to Γι onverges in the weak

∗
topology to the spetral measure of y:

∫

R

f(α)dµι(α) → IdS∞

n
⊗ τ(f(y))

for every ontinuous funtion f on R that tends to zero at in�nity.

Sketh of proof. We �rst suppose that y =
∑

γ∈Γ yγ ⊗ λγ with only a �nite number of

the yγ ∈ S∞n nonzero. The S∞n -valued matrix of the trunate yι of y for the anonial basis

of ℓ2Γι is (yrc−1)(r,c)∈Γι×Γι . As the trunates yι of y are uniformly bounded, it su�es to

prove that

Id⊗ tr

#Γι
(ykι ) → Id⊗ τ(yk)

for every k. This is trivial if k = 0. If k = 1, then

Id⊗ tr

#Γι
(yι) =

1

#Γι

∑

c∈Γι

yc,c = Id⊗ τ(y)

as yc,c = ycc−1 = yǫ. If k > 2, the same formula holds with yk instead of y:

Id⊗ τ(yk) = Id⊗ tr

#Γι
(p̃ιy

kp̃∗ι ),

so that we wish to prove

Id⊗ tr(p̃ιy
kp̃∗ι − (p̃ιyp̃

∗
ι )
k
) = o(#Γι).

Note that

∥

∥Id⊗ tr
(

p̃ιy
kp̃∗ι − (p̃ιyp̃

∗
ι )
k)∥
∥

S1
n

6 ‖p̃ιykp̃∗ι − (p̃ιyp̃
∗
ι )
k‖S1(S1

n)
.

Lemma 5 in [2℄ provides the following estimate. As

p̃ιy
kp̃∗ι − (p̃ιyp̃

∗
ι )
k = p̃ιy

k−1(yp̃∗ι − p̃∗ι p̃ιyp̃
∗
ι ) + (p̃ιy

k−1p̃∗ι − (p̃ιyp̃
∗
ι )
k−1)p̃ιyp̃

∗
ι ,

an indution yields

‖p̃ιykp̃∗ι − (p̃ιyp̃
∗
ι )
k‖S1(S1

n)
6 (k − 1)‖y‖k−1

S∞

n ⊗L∞‖yp̃∗ι − p̃∗ι p̃ιyp̃
∗
ι ‖S1(S1

n)
.

It su�es to onsider the very last norm for eah term yγ ⊗ λγ of y: let h ∈ ℓ2n and β ∈ Γ ;
as

(

(yγ ⊗ λγ)p̃
∗
ι − p̃∗ι p̃ι(yγ ⊗ λγ)p̃

∗
ι

)

(h⊗ eβ) =

{

yγ(h)eγβ if β ∈ Γι and γβ /∈ Γι

0 otherwise,

the de�nition of a Følner averaging net yields

‖(yγ ⊗ λγ)p̃
∗
ι − p̃∗ι p̃ι(yγ ⊗ λγ)p̃

∗
ι ‖S1(S1

n)
6 #(Γι \ γ−1Γι)‖yγ‖S1

n
= o(#Γι).

An approximation argument as in the proof of [2, Proposition 4℄ permits us to onlude

for y ∈ S∞n ⊗ L∞
.
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Here is the promised strengthening of Lemma 2.4 together with three variants.

Theorem 2.7. Let Γ be a disrete amenable group. Let Λ ⊆ Γ and ϕ ∈ CΛ. Consider

the assoiated Toeplitz set Λ̋ = {(r, c) ∈ Γ × Γ : rc−1 ∈ Λ} and the Toeplitz matrix de�ned

by ϕ̋r,c = ϕrc−1
.

(a) Let ψ : R+ → R+
be a ontinuous nondereasing funtion vanishing only at 0. The

norm of the relative Fourier multiplier ϕ on LψΛ(tr⊗τ) and the norm of the relative

Shur multiplier ϕ̋ on Sψ
Λ̋
(Sψ) are equal.

(b) Let p > 1. The omplete norm of the relative Fourier multiplier ϕ on LpΛ and the

omplete norm of the relative Shur multiplier ϕ̋ on Sp
Λ̋
are equal:

‖ϕ‖Mcb(L
p

Λ
) = ‖ϕ̋‖Mcb(S

p

Λ̋
).

(c) The norm of the relative Fourier multiplier ϕ on CΛ, its omplete norm, the norm of

the relative Shur multiplier ϕ̋ on S∞
Λ̋
, and its omplete norm are equal:

‖ϕ‖M(CΛ) = ‖ϕ‖Mcb(CΛ) = ‖ϕ̋‖Mcb(S∞

Λ̋
) = ‖ϕ̋‖M(S∞

Λ̋
).

(d) Suppose that Λ = Γ . The norm of the Fourier algebra multiplier ϕ, its omplete norm,

the norm of the Shur multiplier ϕ̋ on S∞, and its omplete norm are equal:

‖ϕ‖M(A(Γ )) = ‖ϕ‖Mcb(A(Γ )) = ‖ϕ̋‖Mcb(S∞) = ‖ϕ̋‖M(S∞).

Proof. (a). Combine the argument in Theorem 2.1 with the matrix Szeg® limit theorem and

apply Lemma 2.4.

(c). Reall that the omplete norm of a Shur multiplier ϕ̋ on S∞
Λ̋

is equal to its norm

([28, Theorem 3.2℄). Reall also that the norm of a Fourier multiplier χ on C is equal to

its omplete norm, beause Γ is amenable. Moreover, it oinides with the norm of χ in

A(Γ ) ([7, Corollary 1.8℄). Let ϕ be a relative ontrative Fourier multiplier on CΛ; ompose

it with the trivial harater of Γ to obtain a ontrative form on CΛ. Then, by the Hahn-

Banah extension theorem, ϕ is the restrition of a ontrative element χ in A(Γ ). Now χ is

a ompletely ontrative Fourier multiplier on C, and so is ϕ on CΛ. The onlusion follows

from (a) and (b).

3 Loal embeddings of Lp into Sp

The proof of Theorem 2.1 an be interpreted as an embedding of Lψ into an ultraprodut

of �nite-dimensional spaes Sψn that intertwines Fourier and Toeplitz Shur multipliers. If

we restrit ourselves to power funtions ψ : t 7→ tp with p > 1, suh embeddings are well

known and the proof of Theorem 2.7 does not need the full strength of the matrix Szeg®

limit theorem but only the existene of suh embeddings. In this setion, we explain two

ways to obtain them by interpolation.

The �rst way is to extend the lassial result that the redued C∗
-algebra C of a disrete

group Γ has the ompletely positive approximation property if Γ is amenable. We follow

the approah of [6, Theorem 2.6.8℄. Let Γ be a disrete amenable group and let Γι be a

Følner averaging net of sets. As above, we denote by pι the orthogonal projetion from ℓ2Γ
to ℓ2Γι . De�ne the ompression φι and the embedding ψι by

φι : C → B(ℓ2Γι)

x 7→ pιxp
∗
ι

and ψι : B(ℓ
2
Γι) → C

er,c 7→ (1/#Γι)λrλc−1 .

(3.1)

If we endow B(ℓ2Γι) with the normalised trae, these maps are unital ompletely positive,

trae preserving (and normal), and the net (ψιφι) onverges pointwise to the identity of
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C. One an therefore extend them by interpolation to ompletely positive ontrations

on the respetive nonommutative Lebesgue spaes. Reall that Lp(B(ℓ2Γι), (1/#Γι) tr) is

(#Γι)
−1/p

Sp#Γι
. We get a net of omplete ontrations

φ̃ι : L
p → (#Γι)

−1/p
Sp#Γι

and ψ̃ι : (#Γι)
−1/p

Sp#Γι
→ Lp

suh that (ψ̃ιφ̃ι) onverges pointwise to the identity of Lp. Moreover, the de�nitions (3.1)

show that these maps also intertwine Fourier and Toeplitz Shur multipliers.

This approah is more anonial, as it allows us to extend the transfer to vetor-valued

spaes in the sense of [31, Chapter 3℄. Reall that for any hyper�nite semi�nite von Neumann

algebra M and any operator spae E, one an de�ne Lp(M,E). For p = ∞, this spae is

de�ned as M ⊗min E; for p = 1, this spae is de�ned as Mop
∗ ⊗̂E; these spaes form an

interpolation sale for the omplex method when 1 6 p 6 ∞. For us, M will be B(ℓ2) or
the group von Neumann algebra L∞

. As the maps ψι and φι are unital ompletely positive

and trae preserving and normal, they de�ne simultaneously omplete ontrations on M
and M∗. By interpolation, the maps ψι ⊗ IdE and φι ⊗ IdE are still omplete ontrations

on the spaes Lp(E) and Sp[E]. Let ϕ ∈ CΓ ; the transfer shows that the norm of IdE ⊗Mϕ

on Lp(E) is bounded by the norm of IdE ⊗ Mϕ̋ on Sp[E] and that their omplete norms

oinide. In formulas,

‖IdE ⊗Mϕ‖B(Lp(E)) 6 ‖IdE ⊗Mϕ̋‖B(Sp[E]),

‖IdE ⊗Mϕ‖cb(Lp(E)) = ‖IdE ⊗Mϕ̋‖cb(Sp[E]).

The ompression φι provides a two-sided approximation of an element x, whereas the
proof of Theorem 2.1 uses only a one-sided approximation. This subtlety makes a di�erene

in our seond way to obtain embeddings, a diret proof by omplex interpolation.

Proposition 3.1. Let Γ be a disrete amenable group and let (µι) be a Reiter net of means

for Γ :

• eah µι is a positive sequene summing to 1 with �nite support Γι ⊆ Γ and viewed as

a diagonal operator from ℓ2Γι to ℓ
2
Γ , so that

‖µι‖S1 =
∑

γ∈Γι

(µι)γ = 1;

• the net (µι) satis�es, for eah γ ∈ Γ , Reiter's Property P1:

∑

β∈Γ

∣

∣(µι)γ−1β − (µι)β
∣

∣ → 0.

Let x ∈ S∞n ⊗ L∞ = L∞(tr⊗τ) and p > 1. Then

lim sup ‖xµ1/p
ι ‖Sp(Spn) = ‖x‖Lp(tr⊗τ).

Proof. Consider x =
∑

γ∈Γ xγ ⊗ λγ with only a �nite number of the xγ ∈ S∞n nonzero. As

∑

β∈Γ

∣

∣(µι)
1/2
γ−1β − (µι)

1/2
β

∣

∣

2
6

∑

β∈Γ

∣

∣(µι)γ−1β − (µι)β
∣

∣,

Property P1 implies Property P2:

‖λγµ1/2
ι − µ1/2

ι λγ‖S2 → 0,

so that

‖xµ1/2
ι − µ1/2

ι x‖S2(S2
n)

→ 0.
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As the S∞n -valued matrix of x for the anonial basis of ℓ2Γ is (xrc−1)(r,c)∈Γ×Γ ,

‖xµ1/2
ι ‖2S2(S2

n)
=

∑

(r,c)∈Γ×Γ

‖xrc−1‖2Sn2 (µι)c

=
∑

c∈Γ

(µι)c

∑

r∈Γ

‖xrc−1‖2Sn2

=
∑

c∈Γ

(µι)c‖x‖2L2(tr⊗τ) = ‖x‖2L2(tr⊗τ).

By density and ontinuity, the result extends to all x ∈ L2(tr⊗τ).
Let us prove now that for x ∈ L∞(tr⊗τ),

lim sup ‖xµι‖S1(S1
n)

6 ‖x‖L1(tr⊗τ).

The polar deomposition x = u|x| yields a fatorisation x = ab with a = u|x|1/2 and b =
|x|1/2 in L∞(tr⊗τ) suh that

‖a‖L2(tr⊗τ) = ‖b‖L2(tr⊗τ) = ‖x‖1/2L1(tr⊗τ)

‖a‖L∞(tr⊗τ) = ‖x‖1/2L∞(tr⊗τ).

Then xµι = a(bµ
1/2
ι −µ1/2

ι b)µ
1/2
ι +aµ

1/2
ι bµ

1/2
ι , so that the Cauhy-Shwarz inequality yields

‖xµι‖S1(S1
n)

6 ‖a‖L∞(tr⊗τ)‖(bµ1/2
ι − µ1/2

ι b)µ1/2
ι ‖S1(S1

n)
+ ‖aµ1/2

ι bµ1/2
ι ‖S1(S1

n)

6 ‖a‖L∞(tr⊗τ)‖bµ1/2
ι − µ1/2

ι b‖S2(S2
n)

+ ‖a‖L2(tr⊗τ)‖b‖L2(tr⊗τ)

and therefore our laim. Now omplex interpolation yields

lim sup ‖xµ1/p
ι ‖Sp(Spn) 6 ‖x‖Lp(tr⊗τ)

for x ∈ L∞(tr⊗τ) and p ∈ [1,∞]. In fat, onsider the funtion f(z) = u|x|pzµzι analyti

in the strip 0 < ℑz < 1 and ontinuous on its losure; then f(it) is a produt of unitaries

for t ∈ R, so that ‖f(it)‖L∞(tr⊗τ) = 1. Also

‖f(1 + it)‖S1(S1
n)

= ‖|x|pµι‖S1(S1
n)
.

As Sp(Spn) is the omplex interpolation spae (S∞(S∞n ), S1(S1n))1/p,

‖xµ1/p
ι ‖Sp(Spn) = ‖f(1/p)‖Sp(Spn) 6 ‖|x|pµι‖1/pS1(S1

n)
.

Then, taking the upper limit and using the estimate on S1(S1n),

lim sup ‖xµ1/p
ι ‖Sp(Spn) 6 lim sup ‖|x|pµι‖1/pS1(S1

n)

6 ‖|x|p‖1/pL1(tr⊗τ) = ‖x‖Lp(tr⊗τ).

The reverse inequality is obtained by duality; �rst note that for y ∈ L∞(tr⊗τ),
lim tr⊗ tr(yµι) = tr⊗τ(y).

With the above notation and the inequality for p′,

‖x‖pLp(tr⊗τ) = τ(|x|p) = lim tr |x|pµι = lim trµ1−1/p
ι |x|p−1u∗xµ1/p

ι

6 lim sup ‖µ1−1/p
ι |x|p−1‖

Sp
′

(Sp
′

n )
‖xµ1/p

ι ‖Sp(Spn)
= lim sup ‖|x|p−1µ1−1/p

ι ‖
Sp

′

(Sp
′

n )
‖xµ1/p

ι ‖Sp(Spn)
6 ‖|x|p−1‖Lp′(tr⊗τ) lim sup ‖xµ1/p

ι ‖Sp(Spn),
so that

lim sup ‖xµ1/p
ι ‖Sp(Spn) = ‖x‖pLp(tr⊗τ).
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Remark 3.2. Let µ be any positive diagonal operator with trµ = 1 and p > 2; then

‖xµ1/p‖Sp(Spn) 6 ‖x‖Lp for all x ∈ L∞(tr⊗τ). The Reiter ondition is only neessary to

go below exponent 2.

We ould also have used interpolation with a two-sided approximation by Reiter means.

We would have obtained

lim sup ‖µ1/2p
ι xµ1/2p

ι ‖Sp(Spn) = ‖x‖Lp(tr⊗τ).

This formula is in the spirit of the �rst approah of this setion.

4 Transfer of launary sets into launary matrix patterns

As a �rst appliation of Theorem 2.7, let us mention that it provides a shortut for some

arguments in [12℄, as it permits us to transfer launary subsets of a disrete group Γ into

launary matrix patterns in Γ × Γ . Let us �rst introdue the following terminology.

De�nition 4.1. Let Γ be a disrete group and Λ ⊆ Γ . Let X be the redued C∗
-algebra C

of Γ or its nonommutative Lebesgue spae Lp for p ∈ [1,∞[.

(a) The set Λ is unonditional in X if the Fourier series of every x ∈ XΛ onverges

unonditionally; i.e., there is a onstant D suh that

∥

∥

∥

∥

∑

γ∈Λ′

xγεγλγ

∥

∥

∥

∥

X

6 D‖x‖X

for �nite Λ′ ⊆ Λ and εγ ∈ T. The minimal onstant D is the unonditional onstant

of Λ in X .

(b) If X = C, let X̃ = S∞ ⊗ C; if X = Lp, let X̃ = Lp(tr⊗τ). The set Λ is ompletely

unonditional in X if the Fourier series of every x ∈ X̃Λ onverges unonditionally;

i.e., there is a onstant D suh that

∥

∥

∥

∥

∑

γ∈Λ′

xγ ⊗ εγλγ

∥

∥

∥

∥

X̃

6 D‖x‖X̃

for �nite Λ′ ⊆ Λ and εγ ∈ T. The minimal onstant D is the omplete unonditional

onstant of Λ in X .

Unonditional sets in Lp have been introdued as �Λ(p) sets� in [12, De�nition 1.1℄ for

p > 2. If Γ is abelian, they are Walter Rudin's Λ(p) sets if p > 2 and his Λ(2) sets if

p < 2 (see [36, 3℄). Asma Harharras ([12, De�nition 1.5, Comments 1.9℄) alled ompletely

unonditional sets in Lp �Λ(p)cb sets� if p ∈ ]2,∞[, and �K(p)cb sets� if p ∈ ]1, 2]; her

de�nitions are equivalent to ours by the nonommutative Khinhin inequality.

Sets that are unonditional in C have been introdued as �unonditional Sidon sets� in

[4℄. If Γ is amenable, Fourier multipliers are automatially .b. on CΛ, so that suh sets are

automatially ompletely unonditional in C, and there are at least three more equivalent

de�nitions for the ounterpart of Sidon sets in an abelian group. If Γ is nonamenable, these

de�nitions are no longer all equivalent, and our notion of ompletely unonditional sets in C
orresponds to Marek Bo»ejko's �.b. Sidon sets.�

De�nition 4.2. Let 1 6 p 6 ∞ and I be a subset of the produt R× C of two index sets.

(a) The set I is unonditional in the Shatten-von-Neumann lass Sp assoiated with

B(ℓ2C , ℓ
2
R) if the matrix representation of every x ∈ SpI onverges unonditionally; i.e.,

there is a onstant D suh that

∥

∥

∥

∑

q∈I′

xqεqeq

∥

∥

∥

p
6 D‖x‖p
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for �nite I ′ ⊆ I and εq ∈ T. The minimal onstant D is the unonditional onstant of

I in Sp.

(b) The set I is ompletely unonditional in Sp if the matrix representation of every x ∈
SpI(S

p) onverges unonditionally; i.e., there is a onstant D suh that

∥

∥

∥

∑

q∈I′

xq ⊗ εqeq

∥

∥

∥

p
6 D‖x‖p

for �nite I ′ ⊆ I and εq ∈ T. The minimal onstant D is the omplete unonditional

onstant of I in Sp.

Harharras alled unonditional and ompletely unonditional sets in Sp �σ(p) sets� and
�σ(p)cb sets�, respetively ([12, De�nitions 4.1 and 4.4, Remarks 4.6 (iv)℄); she supposed

p < ∞, so that her de�nitions are equivalent to ours by the nonommutative Khinhin

inequality.

Proposition 4.3. Let Γ be a disrete group. Let Λ ⊆ Γ and onsider the assoiated Toeplitz

set Λ̋ = {(r, c) ∈ Γ × Γ : rc−1 ∈ Λ}. Let p ∈ [1,∞[.

(a) If Γ is amenable, then Λ is unonditional in Lp if Λ̋ is unonditional in Sp.

(b) If Λ is ompletely unonditional in Lp, then Λ̋ is ompletely unonditional in Sp. The
onverse holds if Γ is amenable.

Proof. The �rst part of (b) follows by the argument of the proof of [12, Proposition 4.7℄;

let us sketh it. Consider the isometri embedding of the spae Sp
Λ̋
(Sp) in LpΛ(tr⊗ tr⊗τ)

that is given in the proof of Lemma 2.4 and apply the equivalent De�nition 1.5 in [12℄ of

the omplete unonditionality of Λ: this gives the omplete unonditionality of Λ̋ in the

equivalent De�nition 4.4 in [12℄.

Unonditionality in Lp expresses the uniform boundedness of relative unimodular Fourier

multipliers on LpΛ; omplete unonditionality expresses their uniform omplete boundedness.

Unonditionality in Sp expresses the uniform boundedness of relative unimodular Shur

multipliers on Sp
Λ̋
; omplete unonditionality expresses their uniform omplete boundedness.

The seond part of (b) follows therefore from Theorem 2.7 (b) and (a) follows from Theo-

rem 2.1.

Remark 4.4. This transfer does not pass to the limit p = ∞ in (b) and is void in (a). Niholas
Varopoulos proved that unonditional sets in S∞ are �nite unions of patterns whose rows

or whose olumns ontain at most one element, and this exludes sets of the form Λ̋ for any

in�nite Λ ([37, Theorem 4.2℄, see [22, � 5℄ for a reader's guide).

Remark 4.5. See [22, Remark 11.3℄ for an illustration of Proposition 4.3 (b) in a partiular

ontext.

Remark 4.6. Let p be an even integer greater than or equal to 4. The existene of a σ(p)cb
set that is not a σ(q) set for any q > p ([12, Theorem 4.9℄) beomes a diret onsequene

of Walter Rudin's onstrution ([36, Theorem 4.8℄) of a Λ(p) set that is not a Λ(q) set

for any q > p, beause this set has property B(p/2) ([12, De�nition 2.4℄) and is therefore

Λ(p)cb by [12, Theorem 1.13℄ (in fat, it is even �1-unonditional� in Lp beause B(p/2) is
�p/2-independene� ([22, � 11℄)).

Remark 4.7. In the same way, [12, Theorem 5.2℄ beomes a mere reformulation of [12,

Proposition 3.6℄ if one remembers that the Toeplitz Shur multipliers are 1-omplemented in

the Shur multipliers for an amenable disrete group and for all lassial norms. Basially,

results on Λ(p)cb sets produe results on σ(p)cb sets.
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Let us now estimate the omplete unonditional onstant of sumsets. In the ase Γ = Z,

Harharras ([12, Prop. 2.8℄) proved that a ompletely unonditional set in Lp annot ontain
the sumset of haraters A+A for arbitrary large �nite sets A. In partiular, if Λ ⊇ A+A
with A in�nite, then Λ is not a ompletely unonditional set in Lp. Thus, her proof provided
examples of Λ(p) sets that are not Λ(p)cb sets.

We generalise Harharras' result in two diretions. Compare [18, � 1.4℄.

Proposition 4.8. Let Γ be a disrete group and p 6= 2. A ompletely unonditional set

in Lp annot ontain the sumset of two arbitrarily large sets. More preisely, let R and C be

subsets of Γ with #R > n and #C > n3
. Then, for any p > 1, the omplete unonditional

onstant of the sumset RC in Lp is at least n|1/2−1/p|
.

Proof. Let r1, . . . , rn be pairwise distint elements in R. We shall selet indutively elements

c1, . . . , cn in C suh that the ricj are pairwise distint. Assume there are c1, . . . , cm−1 suh

that the indution hypothesis

∀ i, k 6 n ∀ j, l 6 m− 1 (i, j) 6= (k, l) ⇒ ricj 6= rkcl.

holds. We are looking for an element cm ∈ C suh that

∀ i, k 6 n ∀ l 6 m− 1 ricm 6= rkcl.

Suh an element exists as long as m 6 n, beause the set {r−1
i rkcl : i, k 6 n, l 6 m− 1} has

at most

(

n(n− 1) + 1
)

(m− 1) < n3
elements.

The end of the proof is the same as Harharras'. The unonditional onstant of the

anonial basis of elementary matries in Spn is n|1/2−1/p|
; in partiular, there is an unimod-

ular Shur multiplier ϕ̆ on Spn of norm n|1/2−1/p|
(whih is also its omplete norm, by the

way; see [31, Lemma 8.1.5℄). Let Λ be the sumset {ricj : i, j 6 n}; as the ricj are pairwise
distint, we may de�ne a sequene ϕ ∈ CΛ by ϕricj = ϕ̆i,j . By Remark 2.5, the omplete

norm of the Fourier multiplier ϕ on LpΛ is bounded below by the omplete norm of the Shur

multiplier ϕ̆ on SpI .

Example 4.9. Λ = {2i− 2j : i > j} does not form a omplete Λ(p) set for any p 6= 2. Indeed,
{2i − 2j} = Λ ∪ −Λ does not, and if Λ did, then so would −Λ and Λ ∪ −Λ.

5 Toeplitz Shur multipliers on S
p
for p < 1

When 0 < p < 1, a omplete haraterisation of bounded Shur multipliers of Toeplitz

type has been obtained by Alexey Alexandrov and Vladimir Peller in [1, Theorem 5.1℄.

This result was an easy onsequene of their deep results on Hankel Shur multipliers. The

transfer approah provides a diret proof.

Corollary 5.1. Let 0 < p < 1. Let Γ be a disrete abelian group with dual group G. Let

ϕ be a sequene indexed by Γ and de�ne the assoiated Toeplitz matrix ϕ̋ ∈ CΛ̋ by ϕ̋(r, c) =
ϕ(rc−1) for (r, c) ∈ Γ × Γ . Then the following are equivalent:

(a) the sequene ϕ is the Fourier transform of an atomi measure µ =
∑

agδg on G
with

∑|ag|p 6 1;

(b) the Fourier multiplier ϕ is ontrative on Lp;

(c) the Fourier multiplier ϕ is ontrative on Lp(Sp);

(d) the Shur multiplier ϕ̋ is ontrative on Sp;

(e) the Shur multiplier ϕ̋ is ontrative on Sp(Sp).

14



Proof. The impliation (d) ⇒ (b) follows from Theorem 2.1. The equivalene (c) ⇔ (e)
follows from Theorem 2.7 (a). The haraterisation (a) ⇔ (b) is an old result of Daniel

Oberlin ([23℄). It is plain that (e) ⇒ (d). At last, (a) ⇒ (c) is obvious by the p-triangular
inequality.

Remark 5.2. As a onsequene, we get that the norm of a Toeplitz Shur multiplier on Sp(Sp)
oinides with its norm on Sp when p < 1. If p ∈ {1, 2,∞}, this holds for every Shur

multiplier. Let p ∈ ]1, 2[ ∪ ]2,∞[. Then we still do not know whether Shur multipliers are

automatially .b. on Sp. But from [31, Proposition 8.1.3℄, we know that (b) and (c) are

not equivalent: if Γ is an in�nite abelian group, there is a bounded Fourier multiplier on Lp

that is not .b. This ounterexample is easy to desribe: if an in�nite set A ⊆ Γ is launary

enough, the sumset A+A is unonditional in Lp (see [18, Theorem 5.13℄). By Proposition 4.8,

it annot be ompletely unonditional. In partiular, this shows that in Remark 2.3 we

annot remove the restrition to trunated Toeplitz matries in the omputation of the

Shur multiplier norm; that is, (b) ⇒ (d) does not hold.

Remark 5.3. Our questions may also be addressed in the ase of a ompat group like T. A

measurable funtion ϕ on T de�nes

• the Fourier multiplier on measurable funtions on T by x 7→ ϕx;

• the Shur multiplier on integral operators on L2(T) with kernel a measurable funtion x
on T× T by x 7→ ϕ̋x, where ϕ̋(z, w) = ϕ(zw−1).

Vitor Olevskii ([25℄) onstruted a ontinuous funtion ϕ that de�nes a bounded Fourier

multiplier on the spae of funtions with p-summable Fourier series endowed with the norm

given by ‖x‖ =
(
∑|x̂(n)|p

)1/p
for every p ∈ ]1,∞[, while the orresponding Shur multiplier

is not bounded on the Shatten-von-Neumann lass Sp of operators on L2(T) for any p ∈ ]1,
2[ ∪ ]2,∞[.

6 The Riesz projetion and the Hilbert transform

In this setion, we onentrate on Γ = Z, the dual group of T.

Proposition 6.1. Let ̺ be a linear ombination of the identity and the upper triangular

projetion of N × N; i.e., there are z, w ∈ C so that ̺i,j = z if i 6 j and ̺i,j = w
if i > j. Then the norm of the Shur multiplier ̺ on Sψ oinides with the norm of the

Shur multiplier ̺ on Sψ(Sψ).

Proof. Let a ∈ Sψm(Sψn ); a may be onsidered as an m ×m matrix (aij) whose entries aij
are n× n matries, and may be identi�ed with the blok matrix

ã =















0 a11 0 a12 · · ·
0 0 0 0 · · ·
0 a21 0 a22 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .















.

In this identi�ation, IdSψn ⊗M̺(a) is M̺(ã).

The Hilbert transform H is the Shur multiplier obtained by hoosing z = −1 and w = 1.
The upper triangular operators in Sp an be seen as a nonommutative Hp spae, and H

orresponds exatly to the Hilbert transform in this setting (see [33, 19℄). Using lassial

results on Hp spaes, all Hilbert transforms are .b. for 1 < p <∞ (see [38, 33, 19℄).

On the irle T, the lassial Hilbert transform H orresponds to the Fourier multi-

plier given by the sign funtion (with the onvention sgn(0) = 1), and its norm on Lp is
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cot (π/2max(p, p′)) = csc(π/p) + cot(π/p) for 1 < p < ∞. The story of the omputation of

this norm starts with a paper by Israel Gohberg and Naum Krupnik ([10℄) for p a power of 2.
The remaining ases were handled by Stylianos Pihorides ([30℄) and Brian Cole (see [8℄)

independently. The best results in this subjet are those of Brian Hollenbek, Nigel Kalton,

and Igor Verbitsky ([13℄), but they rely on omplex variable methods that are not available

in the operator-valued ase. When p is a power of 2 (or its onjugate), a ombination of

arguments of Gohberg and Krupnik ([9℄) with some of László Zsidó ([38℄) yields the following

result.

Theorem 6.2. Let p ∈ ]1,∞[. The norm and the omplete norm of the Hilbert transform H

on Sp oinide with the omplete norm of the Hilbert transform H on Lp: if ˝sgn(i, j) =
sgn(i− j) for i, j > 1,

‖ ˝sgn‖M(Sp) = ‖ ˝sgn ‖Mcb(Sp) = ‖ sgn‖Mcb(Lp).

If p is a power of 2, then these norms oinide with the norm of H on Lp:

‖ ˝sgn‖M(Sp) = ‖ ˝sgn‖Mcb(Sp) = ‖ sgn ‖Mcb(Lp) = ‖ sgn‖M(Lp) = cot(π/2p).

Proof. Let p > 2. The norm of H on Lp is cot(π/2p) and the three other norms are equal by

the transfer theorem 2.7 and the above proposition. We only need to ompute the omplete

norm of H . Let H̃ = IdSp ⊗H be the Hilbert transform on Lp(tr⊗τ). We shall use Misha

Cotlar's trik to go from Lp to L2p
: the equality (sgn i sgn j) + 1 = sgn(i + j)(sgn i + sgn j)

shows that

(H̃f)(H̃g) + fg = H̃
(

(H̃f)g + f(H̃g)
)

. (6.1)

Step 1. The funtion sgn is not odd, beause of its value in 0; this an be �xed in the following
way. Let Λ = 2Z + 1. The norm of H̃ on Lp(tr⊗τ) is equal to its norm on LpΛ(tr⊗τ). In

fat, let D be de�ned by Df(z) = zf(z2); D is a omplete isometry on Lp with range LpΛ
that ommutes with H .

Step 2. Let S be the real subspae of LpΛ(tr⊗τ) onsisting of funtions with values in Sp

so that f(z) is selfadjoint for almost all z ∈ T. Let us apply Vern Paulsen's o�-diagonal

trik ([27, Lemma 8.1℄) to show that the norm of H̃ on Lp is equal to its norm on S.
Let f ∈ LpΛ(tr⊗τ). Identifying Sp2(S

p) with Sp,

g(z) =

(

0 f(z)
f(z)∗ 0

)

de�nes an element of S. As the adjoint operation is isometri on Sp,

‖g‖S = 21/p‖f‖Lp(tr⊗τ).

Let us now onsider

H̃g =

(

0 H̃f

H̃(f∗) 0

)

.

As 0 /∈ Λ by Step 1, the equality sgn(−i) = − sgn i holds for i ∈ Λ: this yields that

H̃(f∗) = −(H̃f)∗. Therefore

‖H̃g‖S = 21/p‖H̃f‖Lp(tr⊗τ).

Step 3. Let up be the norm of H̃ on Lp(tr⊗τ); then u2p 6 up +
√

1 + up. It su�es to

prove this estimate for f ∈ S, and by approximation we may suppose that f is a �nite linear

ombination of terms ai ⊗ zi + a∗i ⊗ z−i with ai �nite matries. Note that H̃f = −(H̃f)∗.
Formula (6.1) with f = g ombined with Hölder's inequality yields

‖(H̃f)2‖Lp(tr⊗τ) 6 ‖f2‖Lp(tr⊗τ) + 2up‖f‖L2p(tr⊗τ)‖H̃f‖L2p(tr⊗τ).
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Sine f and H̃f take normal values,

‖f2‖Lp(tr⊗τ) = ‖f‖2L2p(tr⊗τ)

‖(H̃f)2‖Lp(tr⊗τ) = ‖H̃f‖2L2p(tr⊗τ).

Therefore, if ‖f‖L2p(tr⊗τ) = 1, ‖H̃f‖L2p(tr⊗τ) must be smaller than the bigger root of t2 −
2upt− 1; that is,

‖H̃f‖2L2p(tr⊗τ) 6 up +
√

u2p + 1 and u2p 6 up +
√

u2p + 1.

Step 4. The multiplier H is an isometry on L2(tr⊗τ), so that u2 = 1 = cot(π/4). As

cot(ϑ/2) = cotϑ+
√
cot2 ϑ+ 1 for ϑ ∈ ]0, π[, we onlude by indution.

Unfortunately, we annot deal with other values of p > 2 by this method.

The Riesz projetion T is the Shur multiplier obtained by hoosing z = 0 and w = 1 in

Proposition 6.1. It is the projetion on the upper triangular part. On the irle, the lassial

Riesz projetion T , that is the projetion onto the analyti part, orresponds to the Fourier

multiplier given by the indiator funtion χZ+
of nonnegative integers; its norm on Lp, as

omputed by Hollenbek and Verbitsky ([14℄), is csc(π/p). As for the Hilbert transform, we

know that the norm and the omplete norm of T on Sp are equal and oinide with the

omplete norm of T on Lp, but, to the best of our knowledge, there is no simple formula

like (6.1) to go from exponent p to 2p. We only obtained the following omputation.

Proposition 6.3. Let p ∈ ]1,∞[. The norm and the omplete norm of the Riesz pro-

jetion T on Sp oinide with the omplete norm of the Riesz projetion T on Lp: if

χ̋Z+(i, j) = χZ+(i − j) for i, j > 1,

‖χ̋Z+‖M(Sp) = ‖χ̋Z+‖Mcb(Sp) = ‖χZ+‖Mcb(Lp).

If p = 4, then these norms oinide with the norm of T on Lp:

‖χ̋Z+‖M(S4) = ‖χ̋Z+‖Mcb(S4) = ‖χZ+‖Mcb(L4) = ‖χZ+‖M(L4) =
√
2.

Proof. We shall ompute the norm of T on S4. Let x be a �nite upper triangular matrix

and let y be a �nite stritly lower triangular matrix. We have to prove that

√
2‖x+ y‖S4 > ‖x‖S4 .

Let us make the obvious estimates on S2 and use the fat that the adjoint operation is

isometri:

‖T (xx∗)‖S2 = ‖T ((x+ y)x∗)‖S2 6 ‖x+ y‖S4‖x‖S4 ,

and similarly,

‖(Id− T )(xx∗)‖S2 = ‖(Id− T )(x(x + y)∗)‖S2 6 ‖x‖S4‖x+ y‖S4.

As T and Id− T have orthogonal ranges,

‖x‖4S4 = ‖xx∗‖2S2 = ‖(Id− T )(xx∗)‖2S2 + ‖T (xx∗)‖2S2 6 2‖x‖2S4‖x+ y‖2S4.

7 Unonditional approximating sequenes

The following de�nition makes sense for general operator spaes, but we hoose to state it

only in our spei� ontext.

De�nition 7.1. Let Γ be a disrete group and Λ ⊆ Γ . Let X be the redued C∗
-algebra

of Γ or its nonommutative Lebesgue spae Lp for p ∈ [1,∞[.

17



(a) A sequene (Tk) of operators on XΛ is an approximating sequene if eah Tk has �nite
rank and Tkx→ x for every x ∈ XΛ. It is a omplete approximating sequene if the Tk
are uniformly .b. If XΛ admits a omplete approximating sequene, then XΛ enjoys

the .b. approximation property.

(b) The di�erene sequene (∆Tk) of a sequene (Tk) is given by ∆T1 = T1 and ∆Tk =
Tk−Tk−1 for k > 2. An approximating sequene (Tk) is unonditional if the operators

n
∑

k=1

εk∆Tk with n > 1 and εk ∈ {−1, 1} (7.1)

are uniformly bounded on XΛ; then XΛ enjoys the unonditional approximation prop-

erty.

(c) An approximating sequene (Tk) is ompletely unonditional if the operators in (7.1)

are uniformly .b. on XΛ; then XΛ enjoys the omplete unonditional approximation

property. The minimal uniform bound of these operators is the omplete unonditional

onstant of XΛ.

We may always suppose that a omplete approximating sequene on CΛ is a Fourier

multiplier sequene (see [11, Theorem 2.1℄). We may also do so on LpΛ if L∞
has the so-

alled QWEP (see [15, Theorem 4.4℄). More preisely, the following proposition holds.

Proposition 7.2. Let Γ be a disrete group and Λ ⊆ Γ . Let X either be its redued C∗
-

algebra or its nonommutative Lebesgue spae Lp, where p ∈ [1,∞[ and L∞
has the QWEP.

If XΛ enjoys the ompletely unonditional approximation property with onstant D, then for

every D′ > D there is a omplete approximating sequene of Fourier multipliers (ϕk) that
realises the ompletely unonditional approximation property with onstant D′

: the Fourier

multipliers

∑n
k=1 εk∆ϕk are uniformly ompletely bounded by D′

on XΛ.

Let us now desribe how to skip bloks in an approximating sequene in order to on-

strut an operator that ats like the Riesz projetion on the sumset of two in�nite sets.

The following trik will be used in the indution below (ompare with the proof of [20,

Theorem 4.2℄):





1 1 0
0 1 0
0 0 0



−





1 1 0
1 1 0
1 1 0



 +





1 1 1
1 1 1
1 1 1



 =





1 1 1
0 1 1
0 0 1



 .

Lemma 7.3. Let Γ be a disrete group and Λ ⊆ Γ . Suppose that Λ ontains the sumset RC
of two in�nite sets R and C. Let (Tk) be either an approximating sequene on LpΛ with

p ∈ [1,∞[, or an approximating sequene of Fourier multipliers on CΛ. Let ε > 0. There is

a sequene (ri) in R, a sequene (ci) in C, and there are indies l1 < k2 < l2 < k3 < . . .
suh that, for every n, the skipped blok sum

Un = Tl1 + (Tl2 − Tk2) + · · ·+ (Tln − Tkn) (7.2)

ats, up to ε, as the Riesz projetion on the sumset {ricj}i,j6n:
{

‖Un(λricj )− λricj‖ < ε if i 6 j 6 n,

‖Un(λricj )‖ < ε if j < i 6 n.

Proof. Let us onstrut the sequenes and indies by indution. If n = 1, let r1 and c1 be

arbitrary; there is l1 suh that ‖Tl1(λr1c1)− λr1c1‖ < ε. Suppose that r1, . . . , rn, c1, . . . , cn,
l1, . . . , ln, and k2, . . . , kn have been onstruted. Let δ > 0 be hosen later.

18



• The operator Un de�ned by Equation (7.2) has �nite rank. If it is a Fourier multiplier,

one an hoose an element rn+1 ∈ R suh that Un(λrn+1cj ) = 0 for j 6 n. If it ats

on LpΛ with p ∈ [1,∞[, one an hoose an element rn+1 ∈ R suh that ‖Un(λrn+1cj)‖ < δ
for j 6 n beause (λγ)γ∈Γ is weakly null in Lp.

• There is kn+1 > ln suh that ‖Tkn+1
(λγ) − λγ‖ < δ for γ ∈ {ricj : 1 6 i 6 n+ 1, 1 6

j 6 n}.

• Again, hoose cn+1 ∈ C suh that ‖(Un − Tkn+1
)(λricn+1

)‖ < δ for i 6 n+ 1.

• Again, hoose ln+1 > kn+1 suh that ‖Tln+1
(λγ) − λγ‖ < δ for γ ∈ {ricj : 1 6 i, j 6

n+ 1}.
Let Un+1 = Un + (Tln+1

− Tkn+1
). If i 6 n+ 1 and j 6 n, then

‖∆Un+1(λricj )‖ 6 ‖Tln+1
(λricj )− λricj‖+ ‖λricj − Tkn+1

(λricj)‖ < 2δ,

so that

‖Un+1(λricj )− λricj‖ < ε+ 2δ if i 6 j 6 n

‖Un+1(λricj )‖ < ε+ 2δ if j < i 6 n

‖Un+1(λrn+1cj )‖ < 3δ if j 6 n.

If i 6 n+ 1, then

‖Un+1(λricn+1
)− λricn+1

‖
6 ‖(Un − Tkn+1

)(λricn+1
)‖+ ‖Tln+1

(λricn+1
)− λricn+1

‖ < 2δ.

This shows that our hoie of rn+1, cn+1, kn+1 and ln+1 is adequate if δ is small enough.

This onstrution will provide an obstale to the unonditionality of sumsets.

Theorem 7.4. Let Γ be a disrete group and Λ ⊆ Γ . Suppose that Λ ontains the sum-

set RC of two in�nite sets R and C.

(a) Let 1 < p < ∞. The omplete unonditional onstant of any approximating sequene

for Lp is bounded below by the norm of the Riesz projetion on Sp, and thus by cscπ/p.

(b) The spaes L1
Λ and CΛ do not enjoy the omplete unonditional approximation prop-

erty.

(c) If Γ is amenable, then the spae CΛ does not enjoy the unonditional approximation

property.

Proof. Let (Tk) be an approximating sequene on LpΛ. By Lemma 7.3, for every ε > 0 and

every n, there are elements r1, . . . , rn ∈ R, c1, . . . , cn ∈ C suh that the Fourier multiplier ϕ
given by the indiator funtion of {ricj}i6j is near to a skipped blok sum Un of (Tk) in

the sense that ‖Un(λricj ) − ϕricjλricj‖ < ε. But Un is the mean of two operators of the

form (7.1): its omplete norm will provide a lower bound for the omplete unonditional

onstant of XΛ. Let us repeat the argument of Lemma 2.4 with x ∈ Spn. As

∥

∥

∥

n
∑

i,j=1

xi,j ei,j

∥

∥

∥

Spn

=
∥

∥

∥

(

n
∑

i=1

ei,i ⊗ λri

)(

n
∑

i,j=1

xi,j ei,j ⊗ λǫ

)(

n
∑

j=1

ej,j ⊗ λcj

)∥

∥

∥

Lp(tr⊗τ)

=
∥

∥

∥

n
∑

i=1

xi,j ei,j ⊗ λricj

∥

∥

∥

Lp(tr⊗τ)
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and

∥

∥

∥

n
∑

i=1

xi,j ei,j ⊗ (Un(λricj )− ϕricjλricj )
∥

∥

∥

Lp(tr⊗τ)
< n2ε‖x‖Spn ,

the omplete norm of Un is nearly bounded below by the norm of the Riesz projetion on Spn:

∥

∥

∥

n
∑

i=1

xi,j ei,j ⊗ Un(λricj )
∥

∥

∥

Lp(tr⊗τ)
>

∥

∥

∥

∑

i6j

xi,j ei,j ⊗ λricj

∥

∥

∥

Lp(tr⊗τ)
− n2ε‖x‖Spn

= ‖T (x)‖Spn − n2ε‖x‖Spn .

This proves (a) as well as the �rst assertion in (b), beause the Riesz projetion is unbounded
on S1. Let (Tk) be an approximating sequene on CΛ; by Lemma 7.2, we may suppose

that (Tk) is a sequene of Fourier multipliers. Thus the seond assertion in (b) follows

from Lemma 7.3 ombined with the preeding argument (where Spn is replaed by S∞n and

Lp(tr⊗τ) by S∞n ⊗ C) and the unboundedness of the Riesz projetion on S∞. For (c), note
that the Fourier multipliers Tk are automatially .b. on CΛ if Γ is amenable (proof of

Theorem 2.7 (c)).

Theorem 7.4 (b) was originally devised to prove that the Hardy spae H1
, orresponding

to the ase Λ = N ⊆ Z and p = 1, admits no ompletely unonditional basis (see [34,

35℄). Theorem 7.4 (c) both generalises the fat that a sumset annot be a Sidon set (see

[18, �� 1.4, 6.6℄ for two proofs and historial remarks, or [17, Proposition IV.7℄) and Daniel

Li's result [16, Corollary 13℄ that the spae CΛ does not have the �metri� unonditional

approximation property if Γ is abelian and Λ ontains a sumset. Li ([16, Theorem 10℄) also

onstruted a set Λ ⊆ Z suh that CΛ has this property, while Λ ontains the sumset of

arbitrarily large sets. This theorem also provides a new proof that the dis algebra has no

unonditional basis and answers [21, Question 6.1.6℄.

Example 7.5. Neither the span of produts {rirj} of two Rademaher funtions in the spae of

ontinuous funtions on {−1, 1}∞ nor the span of produts {sisj} of two Steinhaus funtions
in the spae of ontinuous funtions on T∞

has an unonditional basis.

8 Relative Shur multipliers of rank one

Let ̺ be an elementary Shur multiplier on S∞, that is,

̺ = x⊗ y = (xryc)(r,c)∈R×C .

Then its norm is supr∈R|xr | supc∈C |yc|. How is this norm a�eted if ̺ is only partially

spei�ed, that is, if the ation of ̺ is restrited to matries with a given support?

Theorem 8.1. Let I ⊆ R × C and onsider (xr)r∈R and (yc)c∈C . The relative Shur

multiplier on S∞I given by (xryc)(r,c)∈I has norm sup(r,c)∈I |xryc|.
Note that the norm of the Shur multiplier (xryc)(r,c)∈I is bounded by supr∈R|xr| ×

supc∈C |yc| beause the matrix (xryc)(r,c)∈R×C is a trivial extension of (xryc)(r,c)∈I ; the

proof below provides a onstrutive nontrivial extension of this Shur multiplier that is a

omposition of ampliations of the Shur multiplier in the following lemma.

Lemma 8.2. The Shur multiplier

(

z w
w z

)

has norm max(|z|, |w|) on S∞2 .

Proof. This follows from the deomposition

(

z w
w z

)

=
|z|+ |w|

2

(

t̄u
tū

)

⊗
(

tu tu
)

+
|z| − |w|

2

(

t̄u
−tū

)

⊗
(

tu −tu
)

,

where t, u ∈ T are hosen so that z = |z|t2 and w = |w|u2.
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Proof of Theorem 8.1. We may suppose that C is the �nite set {1, . . . ,m} and that R is the

�nite set {1, . . . , n}, that eah yc is nonzero, and that eah row in R ontains an element

of I. We may also suppose that (|xr|)r∈R and (|yc|)c∈C are noninreasing sequenes. For

eah r ∈ R let cr be the least olumn index of elements of I in or above row r; in other

words,

cr = min
r′6r

min{c : (r′, c) ∈ I}.

The sequene (cr)r∈R is noninreasing. Let us de�ne its inverse (rc)c∈C in the sense that

rc 6 r ⇔ cr 6 c. For eah c ∈ C, let rc = min{r : cr 6 c}. Given r, let r′ 6 r be suh that

(r′, cr) ∈ I; then |xrycr | 6 |xr′ycr |, so that supr∈R|xrycr | 6 sup(r,c)∈I |xryc| and the rank 1

Shur multiplier

̺0 = (xrycr)(r,c)∈R×C

with pairwise equal olumns is bounded by sup(r,c)∈I |xryc| on S∞n . We will now �orret� ̺0
without inreasing its norm so as to make it an extension of (xryc)(r,c)∈I . Let r ∈ R and c′ >
cr; then

xryc′ = xrycr
ycr+1

ycr
· · · yc′

yc′−1
= xrycr

∏

cr6c6c′−1

yc+1

yc

= xrycr
∏

r>rc
c′>c+1

yc+1

yc
.

This shows that it su�es to ompose the Shur multiplier ̺0 with the m− 1 rank 2 Shur

multipliers with blok matrix

̺c =



















1 ··· c c+1 ··· m

1

...

rc−1

(

yc+1

yc

)

1

rc
...

n

1
yc+1

yc



















,

eah of whih has norm 1 on S∞n by Lemma 8.2.

Remark 8.3. We learned after submitting this artile that Timur Oikhberg proved Theo-

rem 8.1 independently and gave some appliations to it; see [24℄.

Remark 8.4. As an illustration, let C = R = {1, . . . , n} and I = {(r, c) : r > c}, and let ai be
an inreasing sequene of positive numbers. Take xr = ar and yc = 1/ac. Then the relative

Shur multiplier (ar/ac)r6c has norm 1. The above proof atually onstruts the norm 1

extension (min(ar/ac, ac/ar))(r,c). If we put ai = exi , we reover that (e−|xr−xc|)(r,c) is

positive de�nite, that is, |·| is a onditionally negative funtion on R.

2010 Mathematis subjet lassi�ation: Primary 47B49; Seondary 43A22, 43A46, 46B28.

Key words and phrases : Fourier multiplier, Toeplitz Shur multiplier, launary set, unon-

ditional approximation property, Hilbert transform, Riesz projetion.
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